
CONVERGENCE OF A MASS CONSERVING ALLEN-CAHN EQUATION
WHOSE LAGRANGE MULTIPLIER IS NONLOCAL AND LOCAL

MATTHIEU ALFARO AND PIERRE ALIFRANGIS

ABSTRACT. We consider the mass conserving Allen-Cahn equation proposed in [8]: the
Lagrange multiplier which ensures the conservation of the mass contains not only nonlocal
but also local effects (in contrast with [14]). As a parameter related to the thickness of a
diffuse internal layer tends to zero, we perform formal asymptotic expansions of the solu-
tion. Then, equipped with this approximate solution, we rigorously prove the convergence
to the volume preserving mean curvature flow, under the assumption that a classical solu-
tion of the latter exists. This requires a precise analysis of the error between the actual and
the approximate Lagrange multipliers.

1. INTRODUCTION

Setting of the problem. In this paper, we consider uε = uε(x, t) the solution of an Allen-
Cahn equation with conservation of the mass proposed in [8], namely

(1.1) ∂tuε = ∆uε +
1

ε2

(
f(uε)−

∫
Ω
f(uε)∫

Ω

√
4W (uε)

√
4W (uε)

)
in Ω× (0,∞),

supplemented with the homogeneous Neumann boundary conditions

(1.2)
∂uε
∂ν

(x, t) = 0 on ∂Ω× (0,∞),

and the initial conditions

(1.3) uε(x, 0) = gε(x) in Ω.

Here Ω is a smooth bounded domain in RN (N ≥ 2) and ν is the Euclidian unit normal
vector exterior to ∂Ω. The small parameter ε > 0 is related to the thickness of a diffuse
interfacial layer. The term

(1.4) −
∫
Ω
f(uε(x, t)) dx∫

Ω

√
4W (uε(x, t)) dx

√
4W (uε(x, t))

can be understood as a Lagrange multiplier for the mass constraint

(1.5)
d

dt

∫
Ω

uε(x, t) dx = 0.

Let us notice that (1.4) combines nonlocal and local effects (see below).
The nonlinearity is given by f(u) := −W ′(u), where W (u) is a double-well potential

with equal well-depth, taking its global minimum value at u = ±1. More precisely we
assume that f is C2 and has exactly three zeros −1 < 0 < +1 such that

(1.6) f ′(±1) < 0, f ′(0) > 0 (bistable nonlinearity),
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and

(1.7) f(−u) = −f(u) (odd nonlinearity).

The condition (1.6) implies that the potential W (u) attains its local minima at u = ±1,
and (1.7) implies that W (−1) = W (+1), so that the two stable zeros of f , namely ±1,
have “balanced” stability. For the sake of clarity, in the computations we restrict ourselves
to the case where

(1.8) f(u) = u(1− u2), W (u) =
1

4
(1− u2)2.

This will simplify the presentation of the asymptotic expansions and is enough to capture
all the features of the problem. For a more general odd and bistable nonlinearity, one would
only has to make additional expansions of f(u) in Section 4 and Section 6.

Remark 1.1. A more general assumption than (1.7) ensuring balanced stability is
∫ +1

−1
f =

0. In this case, this is not clear whether or not our result applies. For instance an additional
term will appear in (4.35) and so in (4.46), so that h1 ≡ 0 in (5.2) may fail. Since this
last property is the main reason for introducing equation (1.1) (see below), we did not go
further into the proof for this more general case.

The initial data gε are well-prepared in the sense that they already have sharp transition
layers whose profile depends on ε. The precise assumptions on gε will appear in (2.10).
For the moment, it is enough to note that −1 ≤ gε ≤ 1 and that, for a subsequence ε→ 0,

(1.9) lim
ε→0

gε =

{
−1 a.e. in the region enclosed by Γ0

+1 a.e. in the region enclosed between ∂Ω and Γ0,

where Γ0 ⊂⊂ Ω is a given smooth bounded hypersurface without boundary.
Our goal is to investigate the behavior of the solution uε of (1.1), (1.2), (1.3), as ε→ 0.

Related works and comments. It is long known that, even for not well-prepared initial
data, the sharp interface limit of the Allen-Cahn equation ∂tuε = ∆uε + ε−2f(uε) moves
by its mean curvature. As long as the classical motion by mean curvature exists, it was
proved in [12] and an optimal estimate of the thickness of the transition layers was provided
in [2]. Let us also mention that, recently, the first term of the actual profile of the layers
was identified [3]. If the mean curvature flow develops singularities in finite time, then a
generalized motion can be defined via level-set methods and viscosity solutions, [18] and
[15]. In this framework, the convergence of the Allen-Cahn equation to generalized motion
by mean curvature was proved by Evans, Soner and Souganidis [17] and a convergence rate
was obtained in [1].

The above results rely on the construction of efficient sub- and super-solutions. Nev-
ertheless, when comparison principle does not hold, a different method exists for well-
prepared initial data. It was used e.g. by Mottoni and Schatzman [24] for the Allen-Cahn
equation (without using the comparison principle!); Alikakos, Bates and Chen [4] for the
convergence of the Cahn-Hilliard equation

(1.10) ∂tuε +∆

(
ε∆uε +

1

ε
f(uε)

)
= 0,

to the Hele-Shaw problem; Caginalp and Chen [10] for the phase field system... The idea is
to first construct a solution uε,k of an approximate problem thanks to matched asymptotic
expansions. Next, using the lower bound of a linearized operator around such a constructed
solution, an estimate of the error ∥uε − uε,k∥Lp is obtained for some p ≥ 2.

Using these technics, Chen, Hilhorst and Logak [14] considered the Allen-Cahn equa-
tion with conservation of the mass

(1.11) ∂tuε = ∆uε +
1

ε2

(
f(uε)−

1

|Ω|

∫
Ω

f(uε)

)
,
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proposed by [25] as a model for phase separation in binary mixture. They proved its
convergence to the volume preserving mean curvature flow

(1.12) Vn = −κ+
1

|Γt|

∫
Γt

κ dHn−1 on Γt.

Here Vn denotes the velocity of each point of Γt in the normal exterior direction and κ the
sum of the principal curvatures, i.e. N − 1 times the mean curvature. For related results,
we also refer the reader to the works [9] (radial case, energy estimates) and [22] (case of a
system).

In a recent work, Brassel and Bretin [8] proposed the mass conserving Allen-Cahn
equation (1.1) as an approximation for mean curvature flow with conservation of the vol-
ume (1.12). According to their formal approach and numerical computations, it seems
that “(1.1) has better volume preservation properties than (1.11)”. In other words, for
the approximation of mean curvature with volume constraint, they numerically observe an
O(ε2) error for the conservation of the volume using (1.1), whereas an O(ε) error is ob-
served when using (1.11). This is clearly related to the cancellation of the ε-terms in the
forthcoming expansions, see (4.17), (5.2) and Remark 1.1. Let us notice that, as far as the
local Allen-Cahn equation is concerned, such an improvement of the accuracy of phase
field solutions, thanks to an adequate perturbation term, was already performed in [20] or
in [11].

In the present paper we prove the convergence of (1.1) to (1.12). Observe that in (1.11)
the conservation of the mass (1.5) is ensured by the Lagrange multiplier − 1

|Ω|
∫
Ω
f(uε)

which is nonlocal, whereas in the considered equation (1.1) the Lagrange multiplier (1.4)
combines nonlocal and local effects. On the one hand, this will make the outer expansion
completely independent of the inner one, and will cancel the ε order terms of all expansions
(see Section 4). On the other hand, this makes the proof of Theorem 2.3 much more
delicate since further accurate estimates are needed (see subsection 6.1). In other words,
in the study [14] of (1.11), it turns out that the nonlocal Lagrange multipliers “disappear”
while estimating the error estimate uε − uε,k. This will not happen in our context and our
key point will be the following. Roughly speaking, our estimates of subsection 6.1 will
make appear an integral of the error on the limit hypersurface which must be compared
with the L2 norm of the error. If the former is small compared with the latter then the
Gronwall’s lemma is enough. If, as expected, the error concentrates so that the former
becomes large compared with the latter, then the situation is favorable: a “sign minus”
intends at decreasing the L2 norm of the error (see subsection 6.1 and Remark 6.2 for
details).

To conclude let us mention the work of Golovaty [21], where a related equation with a
nonlocal/local Lagrange multiplier is considered. The convergence to a weak (via viscos-
ity solutions) volume preserving motion by mean curvature is proved via energy estimates.
The author takes advantage of the fact that, under the mass constraint, the equation he con-
siders is the gradient flow of the same energy functional as its local counterpart, namely∫
Ω

(
1
2 |∇u|

2 + 1
ε2W (u)

)
. The equation (1.1) we consider here does not have such a prop-

erty. We therefore use different methods which, moreover, allow to capture a fine error
estimate between the actual solution and the constructed approximate solution.

2. STATEMENT OF THE RESULTS

The flow (1.12). Let us first recall a few interesting features of the averaged mean curva-
ture flow (1.12). It is volume preserving, area shrinking and every Euclidian sphere is an
equilibrium. The local in time well posedness in a classical framework is well understood
(see Lemma 2.1 for a statement which is sufficient for our purpose). It is also known that
local classical solutions with convex initial data turn out to be global. Additionally, there
exist non-convex hypersurfaces (close to spheres) whose flow is global. For more details
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on the averaged mean curvature flow (1.12), we refer the reader to [19], [23], [16] and the
references therein.

Lemma 2.1 (Volume preserving mean curvature flow). Let Ω0 ⊂⊂ Ω be a subdomain such
that Γ0 := ∂Ω0 is a smooth hypersurface without boundary. Then there is Tmax ∈ (0,∞]
such that the averaged mean curvature flow (1.12), starting from Γ0, has a unique smooth
solution ∪0≤t<Tmax(Γt × {t}) such that Γt ⊂⊂ Ω, for all t ∈ [0, Tmax).

In the sequel, for Γ0 as in (1.9), we fix 0 < T < Tmax and work on [0, T ]. We define

Γ := ∪0≤t≤T (Γt × {t}),

and denote by Ωt the region enclosed by Γt. Let us define the step function ũ = ũ(x, t) by

(2.1) ũ(x, t) :=

{
−1 in Ωt

+1 in Ω \ Ωt

for all t ∈ [0, T ],

which represents the sharp interface limit of uε as ε → 0. Let d be the signed distance
function to Γ defined by

(2.2) d(x, t) =

{
−dist(x,Γt) for x ∈ Ωt

dist(x,Γt) for x ∈ Ω \ Ωt.

Main results. Let us notice that, since −1 ≤ gε ≤ 1, it follows from the maximum
principle that −1 ≤ uε ≤ 1. Also since gε ̸≡ 1 and gε ̸≡ −1, the conservation of the mass
implies uε ̸≡ 1 and uε ̸≡ −1. This enables to rewrite equation (1.1) as

(2.3) ∂tuε −∆uε −
1

ε2
(
f(uε)− ελε(t)(1− uε

2)
)
= 0 in Ω× (0,∞),

by defining

(2.4) ελε(t) :=

∫
Ω
f(uε)∫

Ω

√
4W (uε)

=

∫
Ω
uε − uε

3∫
Ω
1− uε2

.

Our first main result consists in constructing an accurate approximate solution.

Theorem 2.2 (Approximate solution). Let us fix an arbitrary integer k > max(N, 4).
Then there exists (uε,k(x, t), λε,k(t))x∈Ω̄, 0≤t≤T such that

(2.5) ∂tuε,k −∆uε,k − 1

ε2
(
f(uε,k)− ελε,k(t)(1− uε,k

2)
)
= δε,k in Ω× (0, T ),

with

(2.6) ∥δε,k∥L∞(Ω×(0,T )) = O(εk) as ε→ 0,

and

(2.7)
∂uε,k
∂ν

(x, t) = 0 on ∂Ω× (0, T ),

(2.8)
d

dt

∫
Ω

uε,k(x, t) dx = 0 for all t ∈ (0, T ).

Observe that by integrating (2.5) over Ω and using (2.7) and (2.8), we see that

(2.9) ελε,k(t) =

∫
Ω
f(uε,k) +O(εk+2)∫

Ω
1− uε,k2

.

Then we prove the following estimate, in the L2 norm, on the error between the approx-
imate solution uε,k and the solution uε.
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Theorem 2.3 (Error estimate). Let us fix an arbitrary integer k > max(N, 4). Let uε be
the solution of (1.1), (1.2), (1.3) with the initial conditions satisfying

(2.10) gε(x) = uε,k(x, 0) + ϕε(x) ∈ [−1, 1],

∫
Ω

ϕε = 0, ∥ϕε∥L2(Ω) = O(εk−
1
2 ).

Then, there is C > 0 such that, for ε > 0 small enough,

sup
0≤t≤T

∥uε(·, t)− uε,k(·, t)∥L2(Ω) ≤ Cεk−
1
2 .

As it will be clear from our construction in Section 5, the approximate solution satisfies

∥uε,k − ũ∥L∞({(x,t): |d(x,t)|≥
√
ε}) = O(εk+2), as ε→ 0,

with ũ the sharp interface limit defined in (2.1) via the volume preserving mean curvature
flow (1.12) starting from Γ0. We can therefore interpret Theorem 2.3 as a result of conver-
gence of the mass conserving Allen-Cahn equation (1.1) to the volume preserving mean
curvature flow (1.12):

sup
0≤t≤T

∥uε(·, t)− ũ(·, t)∥L2(Ω) = O(ε1/4), as ε→ 0.

Organization of the paper. The organization of this paper is as follows. In Section 3 we
present the needed tools which are by now rather classical. In Section 4, we perform for-
mal asymptotic expansions of the solution (uε(x, t), λε(t)). This will enable to construct
the approximate solution (uε,k(x, t), λε,k(t)), and so to prove Theorem 2.2, in Section 5.
Last we prove the error estimate of Theorem 2.3 in Section 6. In particular and as men-
tioned before, a precise understanding of the error between the actual and the approximate
Lagrange multipliers will be necessary (see subsection 6.1).

Remark 2.4. Through the paper, the notation ψε ≈
∑

i≥0 ε
iψi represents asymptotic ex-

pansion as ε→ 0 and means that, for all integer k, ψε =
∑k

i=0 ε
iψi +O(εk+1).

3. PRELIMINARIES

For the present work to be self-contained, we recall here a few properties which are
classical in the works mentioned in the introduction, [25], [4], [24], [10], [11], [14], [22],
and the references therein.

3.1. Some related linearized operators. We denote by θ0(ρ) := tanh( ρ√
2
) the standing

wave solution of {
θ0

′′ + f(θ0) = 0 on R,
θ0(−∞) = −1, θ0(0) = 0, θ0(∞) = 1,

which we expect to describe the transition layers of the solution uε observed in the stretched
variable. Note that, for all m ∈ N,

(3.1) Dm
ρ [θ0(ρ)− (±1)] = O(e−

√
2|ρ|) as ρ→ ±∞.

We then consider the one-dimensional underlying linearized operator around θ0, acting
on functions depending on the variable ρ by

(3.2) Lu := −uρρ − f ′(θ0(ρ))u.

Lemma 3.1 (Solvability condition and decay at infinity). Let A(ρ, s, t) be a smooth and
bounded function on R × U × [0, T ], with U ⊂ RN−1 a compact set. Then, for given
(s, t) ∈ U × [0, T ], the problem{

Lψ := −ψρρ − f ′(θ0(ρ))ψ = A(ρ, s, t) on R,
ψ(0, s, t) = 0, ψ(·, s, t) ∈ L∞(R),



6 M. ALFARO AND P. ALIFRANGIS

has a solution (which is then unique) if and only if

(3.3)
∫
R
A(ρ, s, t)θ0

′(ρ) dρ = 0.

Under the condition (3.3), assume moreover that there are real constants A± and an
integer i such that, for all integers m, n, l,

(3.4) Dm
ρ D

n
sD

l
t[A(ρ, s, t)−A±] = O(|ρ|ie−

√
2|ρ|) as ρ→ ±∞,

uniformly in (s, t) ∈ U × [0, T ]. Then

(3.5) Dm
ρ D

n
sD

l
t[ψ(ρ, s, t) +

A±

f ′(±1)
] = O(|ρ|ie−

√
2|ρ|) as ρ→ ±∞,

uniformly in (s, t) ∈ U × [0, T ].

Proof. The lemma is rather standard (see [4], [2] among others) and we only give an outline
of the proof. Multiplying the equation by θ0′ and integrating it by parts, we easily see that
the condition (3.3) is necessary. Conversely, suppose that this condition is satisfied. Then,
since θ0′ is a bounded positive solution to the homogeneous equation ψρρ + f ′(θ0(ρ))ψ =
0, one can use the method of variation of constants to find the above solution ψ explicitly:

ψ(ρ, s, t) = θ0
′(ρ)

∫ ρ

0

(
θ0

′−2
(ζ)

∫ ∞

ζ

A(ξ, s, t)θ0
′(ξ) dξ

)
dζ.

Using this expression along with the estimates (3.4) and (3.1), one then proves (3.5). �

Note also, that after the construction of the approximate solution uε,k, we shall need the
estimate of the lower bound of the spectrum of a perturbation of the self-adjoint operator
−∆− ε−2f ′(uε,k) proved in [13]. This will be stated in Section 6.

3.2. Geometrical preliminaries. The following geometrical preliminaries are borrowed
from [14], to which we refer for more details and proofs.

Parametrization around Γ. As mentioned before, we call Γ = ∪0≤t≤T (Γt × {t}) the
smooth solution of the volume preserving mean curvature flow (1.12), starting from Γ0;
we also denote by Ωt the region enclosed by Γt. Let d be the signed distance function to Γ
defined by

(3.6) d(x, t) =

{
−dist(x,Γt) for x ∈ Ωt

dist(x,Γt) for x ∈ Ω \ Ωt.

We remark that d is smooth in a tubular neighborhood of Γ, say in

N3δ(Γt) := {x ∈ Ω : |d(x, t)| < 3δ} ,

for some δ > 0. We choose a parametrization of Γt by X0(s, t), with s ∈ U ⊂ RN−1. We
denote by n(s, t) the unit outer normal vector on ∂Ωt = Γt. For any 0 ≤ t ≤ T , one can
then define a diffeomorphism from (−3δ, 3δ)×U onto the tubular neighborhood N3δ(Γt)
by

X(r, s, t) = X0(s, t) + rn(s, t) = x ∈ N3δ(Γt),

whose inverse is denoted by r = d(x, t), s = S(x, t) := (S1(x, t), · · · , SN−1(x, t)).
Then ∇d is constant along the normal lines to Γt, and the projection S(x, t) from x on
Γt is given by X0(S(x, t), t) = x − d(x, t)∇d(x, t). For x = X0(s, t) ∈ Γt denote by
κi(s, t) the principal curvatures of Γt at point x and by V (s, t) := (X0)t(s, t).n(s, t) the
normal velocity of Γt at point x. Then, one can see that

(3.7) κ(s, t) :=

N−1∑
i=1

κi(s, t) = ∆d(X0(s, t), t),
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(3.8) b1(s, t) := −
N−1∑
i=1

κi
2(s, t) = −(∇d.∇∆d)(X0(s, t), t),

(3.9) V (s, t) := (X0)t(s, t).n(s, t) = −dt(X(r, s, t), t).

In particular, dt(x, t) is independent of r = d(x, t) in a small enough tubular neighbor-
hood of Γt. Changing coordinates form (x, t) to (r, s, t), to any function ϕ(x, t) one can
associate the function ϕ̃(r, s, t) by

ϕ̃(r, s, t) = ϕ(X0(s, t) + rn(s, t), t) or ϕ(x, t) = ϕ̃(d(x, t), S(x, t), t).

The stretched variable. In order to describe the sharp transition layers of the solution uε
around the limit interface, we now introduce a stretched variable. Let us consider a graph
over Γt of the form

Γε
t = {X(r, s, t) : r = εhε(s, t) , s ∈ U},

which is expected to represent the 0 level set, at time t, of the solution uε. We define the
stretched variable ρ(x, t) as “the distance from x to Γε

t in the normal direction, divided by
ε”, namely

(3.10) ρ(x, t) :=
d(x, t)− εhε(S(x, t), t)

ε
.

In the sequel, we use (ρ, s, t) as independent variables for the inner expansion. The link
between the old and the new variable is

x = X̂(ρ, s, t) := X (ε(ρ+ hε(s, t)), s, t) = X0(s, t) + ε(ρ+ hε(s, t))n(s, t).

Changing coordinates form (x, t) to (ρ, s, t), to any function ψ(x, t) one can associate the
function ψ̂(ρ, s, t) by

(3.11) ψ̂(ρ, s, t) = ψ(X0(s, t) + ε(ρ+ hε(s, t))n(s, t), t),

or ψ(x, t) = ψ̂(d(x,t)−εhε(S(x,t),t)
ε , S(x, t), t). A computation then yields

(3.12)

ε2(∂tψ −∆ψ) =− ψ̂ρρ − ε(V +∆d)ψ̂ρ

+ ε2[∂Γt ψ̂ −∆Γψ̂ − (∂Γt hε −∆Γhε)ψ̂ρ]

+ ε2[2∇Γhε.∇Γψ̂ρ − |∇Γhε|2ψ̂ρρ].

where

∂Γt := ∂t +
N−1∑
i=1

Si
t∂si , ∇Γ :=

N−1∑
i=1

∇Si∂si , ∆
Γ :=

N−1∑
i=1

∆Si∂si +
N−1∑
i,j=1

∇Si.∇Sj∂sisj .

Here ∆d is evaluated at (x, t) = (X0(s, t) + ε(ρ + hε(s, t))n(s, t), t), so that (3.7) and
(3.8) imply

(3.13)

∆d = ∆d(X0(s, t) + ε(ρ+ hε(s, t))n(s, t), t)

≈ κ(s, t)− ε(ρ+ hε(s, t))b1(s, t)−
∑
i≥2

εi(ρ+ hε(s, t))
ibi(s, t),

where bi(s, t) (i ≥ 2) are some given functions only depending on Γt.
Last, define

εJε(ρ, s, t) := ∂X̂(ρ, s, t)/∂(ρ, s)

the Jacobian of the transformation X̂ so that, in particular, dx = εJε(ρ, s, t) dsdρ. Then,
for all ρ ∈ R, s ∈ U and 0 ≤ t ≤ T , we have

(3.14) Jε(ρ, s, t) =
N−1∏
i=1

[1 + ε(ρ+ hε(s, t))κi(s, t)].
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4. FORMAL ASYMPTOTIC EXPANSIONS

In this section, we perform formal expansions for the solution uε(x, t) of (2.3). We
start by the outer expansion to represent the solution “far from the limit interface”, then
make the inner expansion to describe the sharp transition layers. Last, the expansion of the
nonlocal term λε(t) is performed. In the meanwhile we shall also discover the expansion
of the correction term hε(s, t) defined in (3.10).

We assume that the solution uε(x, t) is of the form

(4.1) uε(x, t) ≈ u±ε (t) := ±1 + εu±1 (t) + ε2u±2 (t) + · · · (outer expansion),

for x ∈ Ωt (corresponding to u−ε (t)), x ∈ Ω \ Ωt (corresponding to u+ε (t)), and away
from the interface Γt, say in the region where |d(x, t)| ≥

√
ε as we expect the width of

the transition layers to be O(ε). Near the interface Γt, i.e. in the region where |d(x, t)| ≤√
ε, we assume that the function ûε(ρ, s, t) — associated with uε(x, t) via the change of

variables (3.11)— is written as

(4.2) ûε(ρ, s, t) ≈ u0(ρ, s, t) + εu1(ρ, s, t) + ε2u2(ρ, s, t) + · · · (inner expansion).

We also require the matching conditions between outer and inner expansions, that is, for
all i ∈ N,

(4.3) ui(±∞, s, t) = u±i (t) (matching conditions),

for all (s, t) ∈ U × [0, T ]. As we expect the set ρ = 0 to be the 0 level set of the solution
(see subsection 3.2) we impose, for all i ∈ N,

(4.4) ui(0, s, t) = 0 (normalization conditions),

for all (s, t) ∈ U × [0, T ].
As far as the nonlocal term λε(t) is concerned we assume the expansion

(4.5) λε(t) ≈ λ0(t) + ελ1(t) + ε2λ2(t) + · · · (nonlocal term).

Last, the distance correcting term hε(s, t) is assumed to be described by

(4.6) εhε(s, t) ≈ εh1(s, t) + ε2h2(s, t) + · · · (distance correction term),

for all (s, t) ∈ U × [0, T ].
In the following, by the (complete) expansion at order 1 we mean

{d(x, t), λ0(t), u1(ρ, s, t), u±1 (t)} (expansion at order 1),

and by the (complete) expansion at order i ≥ 2 we mean

(4.7) {hi−1(s, t), λi−1(t), ui(ρ, s, t), u
±
i (t)} (expansion at order i ≥ 2).

Let us also recall that we have chosen

f(u) = u(1− u2), W (u) =
1

4
(1− u2)2.

4.1. Outer expansion. By plugging the outer expansion (4.1) and the expansion (4.5) into
the nonlocal partial differential equation (2.3), we get

(4.8) ε2(u±ε )
′(t) = u±ε (t)− (u±ε (t))

3 − ελε(t)(1− (u±ε (t))
2).

Since u±ε (t) ≈
∑

i≥0 ε
iu±i (t), where u±0 (t) = ±1, an elementary computation yields

−ελε(t)(1− (u±ε (t))
2) ≈

∑
i≥1

 ∑
p+q=i ,q ̸=0

λp(t)
∑

k+l=q

u±k (t)u
±
l (t)

 εi+1,

and

(u±ε (t))
3 ≈

∑
i≥0

 ∑
p+q=i

u±p (t)
∑

k+l=q

u±k (t)u
±
l (t)

 εi.
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Hence, collecting the ε terms in (4.8), we discover 0 = u±1 (t) − 3u±1 (t)(u
±
0 (t))

2 so that
u±1 (t) ≡ 0. Next, an induction easily shows that

u±i (t) ≡ 0 for all i ≥ 1.

Therefore the outer expansion is already completely known and is trivial:

(4.9) u±ε (t) ≡ ±1.

In other words, thanks to the adequate form of the Lagrange multiplier, the outer expansion
is independent of the expansion of the nonlocal term. This is in contrast with the equation
considered in [14].

4.2. Inner expansion. It follows from (3.12) that, in the new variables, equation (2.3) is
recast as

ûερρ + ûε − (ûε)
3 = ελε(t)(1− (ûε)

2)− ε(V +∆d)ûερ(4.10)

+ε2[∂Γt ûε −∆Γûε − (∂Γt hε −∆Γhε)ûερ]

+ε2[2∇Γhε.∇Γûερ − |∇Γhε|2ûερρ].

The ε0 terms. By collecting the ε0 terms above and using the normalization and matching
conditions (4.3), (4.4) we discover that u0(ρ, s, t) = θ0(ρ), with θ0 the standing wave
solution of

(4.11)

{
θ0

′′ + f(θ0) = 0 on R,
θ0(−∞) = −1, θ0(0) = 0, θ0(∞) = 1.

Formally, this solution represents the first approximation of the profile of the transition
layers around the interface observed in the stretched coordinates. Note that since f(u) =
u− u3, one can even compute θ0(ρ) = tanh( ρ√

2
).

The ε1 terms. Next, since ûε(ρ, s, t) ≈
∑

i≥0 ui(ρ, s, t)ε
i, where u0(ρ, s, t) = θ0(ρ), an

elementary computation yields

(4.12) ελε(t)
(
1− (ûε)

2(ρ, s, t)
)
≈ −

∑
i≥0

 ∑
p+q=i

λp(t)βq(ρ, s, t)

 εi+1,

where

βq(ρ, s, t) =

{
θ0

2(ρ)− 1 if q = 0∑
k+l=q uk(ρ, s, t)ul(ρ, s, t) if q ≥ 1,

and also

(4.13) (ûε)
3(ρ, s, t) ≈

∑
i≥0

 ∑
p+q=i

up(ρ, s, t)
∑

k+l=q

uk(ρ, s, t)ul(ρ, s, t)

 εi.

Hence, plugging the expansion (3.13) of ∆d into (4.10) and collecting the ε terms, we
discover

(4.14) Lu1 := −u1ρρ − f ′(θ0(ρ))u1 = (V + κ)(s, t)θ0
′(ρ)− (1− θ0

2(ρ))λ0(t).

For the above equation to be solvable (see Lemma 3.1 for details) it is necessary that, for
all (s, t) ∈ U × [0, T ], ∫

R
Lu1(ρ, s, t)θ0′(ρ) dρ = 0,

which in turn yields

(4.15) V (s, t) = −κ(s, t) + σλ0(t), σ :=

∫
R(1− θ0

2)θ0
′∫

R θ0
′2

.



10 M. ALFARO AND P. ALIFRANGIS

As seen in subsection 3.2 the above equation can be recast as

(4.16) dt(x, t) = ∆d(x, t)− σλ0(t) for x ∈ Γt.

Now, in view of (4.11), we can write 0 =
∫ z

−∞(θ0
′′+f(θ0))θ0

′ =
∫ z

−∞(θ0
′′−W ′(θ0))θ0

′

and find the relation 1−θ02 =
√
2θ0

′, so that σ =
√
2. Plugging this and (4.15) into (4.14)

we see that Lu1 = 0. Therefore, the normalization u1(0, s, t) = 0 implies

(4.17) u1(ρ, s, t) ≡ 0.

Again this is in contrast with the equation considered in [14].

The εi terms (i ≥ 2). Now, taking advantage of u0(ρ, s, t) = θ0(ρ) and of u1(ρ, s, t) ≡ 0
we identify, for i ≥ 2, the εi terms in all terms appearing in (4.10). In the sequel we omit
the arguments of most of the functions and, by convention, the sum

∑b
a is null if b < a.

Using (4.13) we see that the εi term in ûερρ + ûε − (ûε)
3 is

(4.18) −Lui − θ0

i−2∑
k=2

ukui−k −
i−2∑
p=2

up
∑

k+l=i−p

ukul (term 1).

In view of (4.12), the εi term in ελε(t)(1− (ûε)
2) is

(4.19) λi−1(1− θ0
2)−

∑
p+q=i−1,q ̸=0

λp
∑

k+l=q

ukul (term 2).

In order to deal with the term −ε(V +∆d)ûερ, we first note that (3.13) and (4.6) yield
the following expansion of the Laplacian

(4.20) ∆d ≈ κ−
∑
i≥1

(b1hi + δi) ε
i,

with

(4.21) δi = δi(ρ, s, t) =
i∑

k=0

ck(s, t)ρ
k

a polynomial function in ρ of degree lower than i, whose coefficients ck(s, t) are them-
selves polynomial in (h1, ..., hi−1) which are part of the formal expansion at lower orders,
and in (b1, ...bi) which are given functions. Among others, we have δ1(ρ, s, t) = b1(s, t)ρ
and δ2(ρ, s, t) = b2(s, t)(ρ+ h1(s, t))

2. Combining uερ ≈ θ0
′ + ε2u2ρ + · · · and (4.20),

we next discover that the εi term in −ε(V +∆d)ûερ is

b1hi−1θ0
′ + δi−1θ0

′ − (V + κ)u(i−1)ρ(4.22)

+
∑i−3

p=1 (b1hp + δp)u(i−1−p)ρ (term 3).

We see that the εi term in ε2[∂Γt ûε −∆Γûε − (∂Γt hε −∆Γhε)ûερ] is given by

(4.23) (∂Γt −∆Γ)ui−2− (∂Γt −∆Γ)hi−1θ0
′−

i−3∑
p=1

(∂Γt −∆Γ)hpu(i−1−p)ρ (term 4).

Note that

|ε∇Γhε|2 ≈ ε2|∇Γh1|2 +
∑
i≥3

(
2∇Γh1.∇Γhi−1 + ηi

)
εi,

where
ηi = ηi(s, t) :=

∑
p+q=i−2,p̸=0,q ̸=0

∇Γhp+1(s, t).∇Γhq+1(s, t)
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depends only on the derivatives of h1,...,hi−2. Combining this with ûερρ ≈ θ0
′′+ε2u2ρρ+

· · · , we discover that the εi term in −ε2|∇Γhε|2ûερρ is

(4.24) −βi(∇Γh1.∇Γhi−1)θ0
′′ − |∇Γh1|2u(i−2)ρρ −

i−3∑
k=0

αkukρρ (term 5),

where αk = αk(s, t) depends only on the derivatives of h1,...,hi−2 and β2 = 0, βi = 2 if
i ≥ 3.

Last, since ∇Γûερ ≈ ε2∇Γu2ρ + · · · , we see that the εi term in ε2[2∇Γhε.∇Γûερ] is

(4.25) 2

i−2∑
k=2

∇Γhi−1−k.∇Γukρ (term 6).

Hence, in view of the six terms appearing in (4.18), (4.19), (4.22), (4.23), (4.24), (4.25),
when we collect the εi term (i ≥ 2) in (4.10) we face up to
(4.26)
Lui = (MΓhi−1)θ0

′−(1−θ02)λi−1+βi(∇Γh1.∇Γhi−1)θ0
′′+ |∇Γh1|2u(i−2)ρρ+Ri−1

where MΓ denotes the linear operator acting on functions h(s, t) by

(4.27) MΓh := ∂Γt h−∆Γh− b1h,

and where Ri−1 = Ri−1(ρ, s, t) contains all the remaining terms. Observe that, for the
solvability condition for (4.26) to provide the equation (4.33) for hi−1(s, t), it is important
that Ri−1 does not “contain” hi−1. Therefore, we have to leave the term |∇Γh1|2u(i−2)ρρ

outside Ri−1 for the case i = 2, but with a slight abuse of notation we can “insert”
|∇Γh1|2u(i−2)ρρ in Ri−1 for i ≥ 3. As an example, for i = 2 we see that

(4.28) R1(ρ, s, t) = −δ1(ρ, s, t)θ0′(ρ) = −b1(s, t)ρθ0′(ρ),
so that we infer that, for all integers m, n, l,

(4.29) Dm
ρ D

n
sD

l
t[R1(ρ, s, t)] = O(|ρ|e−

√
2|ρ|) as ρ→ ±∞,

uniformly in (s, t). Now, for i ≥ 3, we isolate the “worst terms” —which are the δi’s— in
Ri−1 and write

(4.30) Ri−1 = −δi−1θ0
′ −

i−3∑
p=1

δpu(i−1−p)ρ + ri−1,

where ri−1 = ri−1(ρ, s, t) contains all the remaining terms.

Lemma 4.1 (Decay of Ri−1). Let i ≥ 2. Assume that, for any 1 ≤ k ≤ i− 1, there holds
that, for all integers m, n, l,

(4.31) Dm
ρ D

n
sD

l
t[uk(ρ, s, t)] = O(|ρ|k−1e−

√
2|ρ|) as ρ→ ±∞,

uniformly in (s, t) ∈ U × [0, T ]. Then, for all integers m, n, l

(4.32) Dm
ρ D

n
sD

l
t[Ri−1(ρ, s, t)] = O(|ρ|i−1e−

√
2|ρ|) as ρ→ ±∞,

uniformly in (s, t) ∈ U × [0, T ].

Proof. Let us have a look at expression (4.30) of Ri−1. By a tedious but straightforward
examination of the six terms (4.18), (4.19), (4.22), (4.23), (4.24), (4.25), one can write the
exact expression of Ri−1 appearing in (4.26) and, so, that of ri−1 appearing in (4.30). In
view of this exact expression (that we do not write here) and of estimates (4.31), one can
see that ri−1(ρ, s, t) depends only on

• V (s, t), κ(s, t), b1(s, t), ..., bi(s, t) which are bounded given functions
• λ0(t), ..., λi−2(t)
• h1(s, t), ..., hi−2(s, t) and their derivatives w.r.t. s and t
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• u0(ρ, s, t) which is equal to θ0(ρ), u1(ρ, s, t) which vanishes, ..., ui−1(ρ, s, t) and
their derivatives w.r.t. ρ, s and t

in such a way that it is O(|ρ|i−2e−
√
2|ρ|) as ρ→ ±∞. Concerning the term

−δi−1(ρ, s, t)θ0
′(ρ)−

i−3∑
p=1

δp(ρ, s, t)u(i−1−p)ρ,

the fact that it behaves like (4.32) follows from (4.31) and the fact that δp(ρ, s, t) grows
like |ρ|p, as seen in (4.21). �

Now, in virtue of Lemma 3.1, the solvability condition for equation (4.26) yields, for all
(s, t),

(4.33) (MΓhi−1)(s, t)

∫
R
θ0

′2 − λi−1(t)

∫
R
(1− θ0

2)θ0
′ +

∫
R
Ri−1(·, s, t)θ0′ = 0.

Note that the term −βi(∇Γh1.∇Γhi−1)θ0
′′ does not appear above since

∫
R θ0

′′θ0
′ = 0.

Note also that the term −|∇Γh1|2u(i−2)ρρ does not appear for the same reason if i = 2,
and because it can be “inserted” in Ri−1 for i ≥ 3 without altering the fact that Ri−1 does
not depend on hi−1 (see also the explanations after (4.27)). The above equality can be
recast as

(4.34) (MΓhi−1)(s, t) = σλi−1(t)− σ∗
∫
R
Ri−1(ρ, s, t)θ0

′(ρ) dρ,

with σ defined in (4.15) and σ∗ :=
(∫

R θ0
′2)−1

. Note that, thanks to 1− θ0
2 =

√
2θ0

′, we
have σ =

√
2 (as seen before) and also σ∗ = 3

4

√
2.

In order to construct the terms ui for i ≥ 2 by induction, let us first examine the case
i = 2. From (4.28) and the fact that

∫
R ρθ0

′2(ρ) dρ = 0 (odd function), we see that (4.34)
reduces to

(4.35) (MΓh1)(s, t) = σλ1(t).

Assume that h1 satisfies the above equation. Then since u1 ≡ 0 trivially satisfies (4.31),
Lemma 4.1 implies that R1(ρ, s, t) together with its derivatives are O(|ρ|e−

√
2|ρ|) as ρ →

±∞. It follows from Lemma 3.1 that

(4.36) Lu2 = (MΓh1)θ0
′ − (1− θ0

2)λ1 + |∇Γh1|2θ0′′ +R1,

admits a unique solution u2(ρ, s, t) such that u2(0, s, t) = 0, which additionally satisfies
Dm

ρ D
n
sD

l
t[u2(ρ, s, t)] = O(|ρ|e−

√
2|ρ|).

Now, an induction argument straightforwardly concludes the construction of the inner
expansion.

Lemma 4.2 (Construction by induction). Let i ≥ 2. Assume that, for all 1 ≤ k ≤ i − 1
the term uk is constructed such that

(4.37) Dm
ρ D

n
sD

l
t[uk(ρ, s, t)] = O(|ρ|k−1e−

√
2|ρ|) as ρ→ ±∞,

uniformly in (s, t) ∈ U × [0, T ]. Assume moreover that hi−1(s, t) satisfies the solv-
ability condition (4.34). Then one can construct ui(ρ, s, t) solution of (4.26) such that
ui(0, s, t) = 0 and

(4.38) Dm
ρ D

n
sD

l
t[ui(ρ, s, t)] = O(|ρ|i−1e−

√
2|ρ|) as ρ→ ±∞,

uniformly in (s, t) ∈ U × [0, T ].



CONVERGENCE OF A MASS CONSERVING ALLEN-CAHN EQUATION 13

4.3. Expansion of the nonlocal term λε(t) and the distance correction term hε(s, t).
By following [14, subsection 5.4] with

√
ε playing the role of δ, we see that an asymptotic

expansion of the conservation of the mass (1.5) yields

(4.39) 0 =
d

dt

∫
Ω

uε(x, t) dt ≈ I1 + I2 + I3,

where I1 = 0, since in our case u±ε (t) ≡ ±1, and

(4.40) I2 :=

∫
|ρ|<1/

√
ε

∂Γt ûε(ρ, s, t) εJ
ε(ρ, s, t) dρ ds,

(4.41) I3 :=

∫
|ρ|<1/

√
ε

(−V − ε∂Γt hε)(s, t) ∂ρûε(ρ, s, t) J
ε(ρ, s, t) dρ ds,

Combining ∂Γt := ∂t +
∑N−1

i=1 Si
t∂si with u0(ρ, s, t) = θ0(ρ) and u1(ρ, s, t) ≡ 0, we

see that

∂Γt ûε(ρ, s, t) ≈
∑
i≥2

εi[∂t +
N−1∑
k=1

Sk
t ∂sk ]ui(ρ, s, t).

In view of the above inner expansion, this implies

∂Γt ûε(ρ, s, t) ≈
∑
i≥2

εiO
(
|ρ|i−1e−

√
2|ρ|
)
,

where O
(
|ρ|i−1e−

√
2|ρ|
)

depends only on expansions at orders ≤ i− 1. By plugging this
into (4.40), we get

I2 ≈
∑
i≥3

εiγi−2,

where γi−2 = γi−2(t) depends only on expansions at orders ≤ i− 2.
We now turn to the term I3. We expand(

−V − ε∂Γt hε
)
(s, t) ≈ dt(X0(s, t), t)−

∑
i≥1

εi∂Γt hi(s, t),

and
∂ρûε(ρ, s, t) ≈ θ0

′(ρ) +
∑
i≥2

εi∂ρui(ρ, s, t).

Expanding the Jacobian (3.14) and using (3.7), we get

Jε(ρ, s, t) ≈ 1 + ∆d(X0(s, t), t) ε(ρ+ hε(s, t)) +
∑
i≥2

εiµi−1,

where µi−1 = µi−1(ρ, s, t) depends only on expansions at orders ≤ i−1. Multiplying the
three above equalities, we see that the integrand in I3 expands as

θ0
′dt + εθ0

′ [−∂Γt h1 + h1dt∆d+ ρdt∆d
]
+
∑
i≥2

εiθ0
′(−∂Γt hi + hidt∆d+ υi−1),

where υi−1 = υi−1(ρ, s, t) depends only on expansions at orders ≤ i − 1. We inte-
grate this over s ∈ U and |ρ| < 1/

√
ε and, using

∫
|ρ|<1/

√
ε
θ0

′ ≈
∫
R θ0

′(ρ) dρ = 2 and∫
|ρ|<1/

√
ε
ρθ0

′(ρ) dρ = 0 (odd function), we discover

1

2
I3 ≈

∫
U

dt(s, t) ds+ ε

∫
U

(−∂Γt h1 + (dt∆d)h1)(s, t) ds

+
∑
i≥2

εi
[∫

U

(−∂Γt hi + (dt∆d)hi)(s, t) ds+ ωi−1

]
,
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where ωi−1 = ωi−1(t) depends only on expansions at orders ≤ i − 1. Using (4.16) to
substitute dt, (4.35) to substitute ∂Γt h1, (4.34) to substitute ∂Γt hi, we have

1

2
I3 ≈

∫
U

(∆d− σλ0) ds+ ε

∫
U

(−∆Γh1 − b1h1 − σλ1 + (dt∆d)h1) ds

+
∑
i≥2

εi
[∫

U

(−∆Γhi − b1hi − σλi + (dt∆d)hi) ds+ ζi−1

]
,

where ζi−1 = ζi−1(t) depends only on expansions at orders ≤ i− 1.
Last, using

∫
U
∆Γhi ds = 0, we see that I2 + I3 ≈ 0 reduces to

σλ0(t) = ∆d(·, t)(4.42)

σλ1(t) = −[b1(·, t)− dt(·, t)∆d(·, t)]h1(·, t)(4.43)

σλi(t) = −[b1(·, t)− dt(·, t)∆d(·, t)]hi(·, t) + Λi−1(t) (i ≥ 2),(4.44)

where ϕ(·) := 1
|U |
∫
U
ϕ denotes the average of ϕ over Γt (parametrized by U ), and Λi−1(t)

depends only on expansions at orders ≤ i − 1. Moreover if we plug (4.42), (4.43) and
(4.44) into (4.16), (4.35) and (4.34), we have the following closed system for d, h1,.., hi
on U × [0, T ]:

dt = ∆d−∆d(·, t)(4.45)

∂Γt h1 = ∆Γh1 + b1h1 − [b1(·, t)− dt(·, t)∆d(·, t)]h1(·, t)(4.46)

∂Γt hi = ∆Γhi + b1hi − [b1(·, t)− dt(·, t)∆d(·, t)]hi(·, t) + Λi−1(t) (i ≥ 2).(4.47)

5. THE APPROXIMATE SOLUTION uε,k , λε,k

In order to construct our desired approximate solution and prove Theorem 2.2, let us first
explain how the previous section enables to determine, at any order, the outer expansion
(4.1), the inner expansion (4.2), the expansion of the nonlocal term (4.5), and the expansion
of the distance correction term (4.6).

First, as seen before, the outer expansion (4.1) is already completely known since
u±i (t) ≡ 0 for all i ≥ 1.

Recall that Γ = ∪0≤t≤T (Γt × {t}) denotes the unique smooth evolution of the volume
preserving mean curvature flow (1.12) starting from Γ0 ⊂⊂ Ω, to which we associate the
signed distance function d(x, t). Hence, defining λ0(t) as in (4.42) and u1(ρ, s, t) ≡ 0 as
in (4.17), we are equipped with the first order expansion

(5.1) {d(x, t), λ0(t), u1(ρ, s, t) ≡ 0}.
Next, since Γt is a smooth hypersurface without boundary, there is a unique smooth so-
lution h1(s, t) to the parabolic equation (4.46). Assuming h1(s, 0) = 0 for s ∈ U , we
see that h1(s, t) ≡ 0, which combined with (4.43) yields λ1(t) ≡ 0. Notice that these
cancellations are consistent with the observation of [8] that “(1.1) has better volume pre-
serving properties than the traditional mass conserving Allen-Cahn equation (1.11)”. In
Section 4, we have defined u2(ρ, s, t) as the solution of (4.36), which now reduces to
Lu2 = −b1(s, t)ρθ0′(ρ). This completes the second order expansion, namely

(5.2) {h1(s, t) ≡ 0, λ1(t) ≡ 0, u2(ρ, s, t)}.
Now, for i ≥ 2, let us assume that expansions {hk−1(s, t), λk−1(t), uk(ρ, s, t)} are con-
structed for all 2 ≤ k ≤ i. Therefore we can construct Λi−1(t) appearing in (4.47).
Assuming hi(s, 0) = 0 for s ∈ U , there is a unique smooth solution hi(s, t) to the para-
bolic equation (4.47). This enables to construct λi(t) via (4.44). Now, hi(s, t) satisfies the
solvability condition (4.34) at rank i, so that Lemma 4.2 provides ui+1(ρ, s, t), the solu-
tion of (4.26) at rank i + 1 with ui+1(0, s, t) = 0. This completes the construction of the
i+ 1-th order expansion {hi(s, t), λi(t), ui+1(ρ, s, t)}.
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Note also that, from the above induction argument, we also deduce the behavior (4.38)
for all the ui(ρ, s, t)’s.

Proof of Theorem 2.2. We are now in the position to construct the approximate solution
as stated in Theorem 2.2. Let us fix an integer k > max(N, 4). We define

ρε,k(x, t) :=
1

ε

[
d(x, t)−

k+2∑
i=1

εihi(S(x, t), t)

]
=
dε,k(x, t)

ε
,

uinε,k(x, t) := θ0(ρε,k(x, t)) +
k+3∑
i=1

εiui(ρε,k(x, t), S(x, t), t),

uoutε,k (x, t) := ũ(x, t),

λε,k(t) := λ0(t) +

k+2∑
i=1

εiλi(t),

where ũ is the sharp interface limit defined in (2.1). We introduce a smooth cut-off function
ζ(z) = ζε(z) such that 

ζ(z) = 1 if |z| ≤
√
ε,

ζ(z) = 0 if |z| ≥ 2
√
ε,

0 ≤ zζ ′(z) ≤ 4 if
√
ε ≤ |z| ≤ 2

√
ε.

For x ∈ Ω̄ and 0 ≤ t ≤ T , we define

u∗ε,k(x, t) := ζ(d(x, t))uinε,k(x, t) + [1− ζ(d(x, t))]uoutε,k (x, t).

If ε > 0 is small enough then the signed distance d(x, t) is smooth in the tubular neighbor-
hood N3

√
ε(Γ), and so is uinε,k(x, t). This shows that u∗ε,k is smooth.

Plugging (u∗ε,k(x, t), λε(t)) into the left-hand side of (2.5), we find a error term δ∗ε,k(x, t)
which is such that

• δ∗ε,k(x, t) = 0 on {|d(x, t)| ≥ 2
√
ε} since, then, u∗ε,k = uoutε,k = ±1,

• ∥δ∗ε,k∥L∞ = O(εk+2) on {|d(x, t)| ≤
√
ε} since, then, u∗ε,k = uinε,k and the

expansions of Section 4 were done on this purpose,
• ∥δ∗ε,k∥L∞ = O(εk

∗
), for any integer k∗, on {

√
ε ≤ |d(x, t)| ≤ 2

√
ε} since, then,

the decaying estimates (3.1) and (4.38) imply that u∗ε,k − uoutε,k = u∗ε,k − ±1 =

O(e
−

√
2

2
√

ε ), valid also after any differentiation.

Hence ∥δ∗ε,k∥L∞(Ω×(0,T )) = O(εk+2), which is even better than (2.5). Also u∗ε,k clearly
satisfies (2.7).

Now, to ensure the conservation of the mass of the approximate solution, we add a
correcting term (which depends only on time) and define

uε,k(x, t) := u∗ε,k(x, t) +
1

|Ω|

∫
Ω

(u∗ε,k(x, 0)− u∗ε,k(x, t)) dx,

which then satisfies (2.8), and still (2.7). Note also that subsection 4.3 implies that the
correcting term∫

Ω

(u∗ε,k(x, 0)− u∗ε,k(x, t)) dx = −
∫
Ω

∫ t

0

∂tu
∗
ε,k(x, τ) dτdx

is O(εk+2) together with its time derivative. Hence, when we plug uε,k = u∗ε,k+O(εk+2)

into the left-hand side of (2.5), we find a error term δε,k whose L∞ norm is O(εk). �
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6. ERROR ESTIMATE

We shall here prove the error estimate, namely Theorem 2.3. For ease of notation,
we drop most of the subscripts ε and write u, λ, uk, λk, δk for uε, λε, uε,k, λε,k, δε,k
respectively. By ∥ · ∥, ∥ · ∥2+p we always mean ∥ · ∥L2(Ω), ∥ · ∥L2+p(Ω) respectively. In
the sequel, we denote by C various positive constants which may change from places to
places and are independent on ε > 0.

Let us define the error

R(x, t) := u(x, t)− uk(x, t).

Clearly ∥R∥L∞ ≤ 3. It follows from the mass conservation properties (1.5), (2.8), and the
initial conditions (2.10) that

(6.1)
∫
Ω

R(x, t) dx = 0 for all 0 ≤ t ≤ T, ∥R(·, 0)∥ = O(εk−
1
2 ).

We successively subtract the approximate equation (2.5) from equation (2.3), multiply
by R and then integrate over Ω. This yields

(6.2)

1

2

d

dt

∫
Ω

R2 =−
∫
Ω

|∇R|2 + 1

ε2

∫
Ω

f ′(uk)R
2

+
1

ε2

∫
Ω

(f(u)− f(uk)− f ′(uk)R)R−
∫
Ω

δkR− 1

ε2
Λ,

where

(6.3) Λ = Λ(t) :=

∫
Ω

[ελ(1− u2)R− ελk(1− uk
2)R].

Since (f(u)−f(uk)−f ′(uk)R)R = −3ukR
3−R4 = O(R2+p), where p := min( 4

N , 1),
we have∣∣∣∣ 1ε2

∫
Ω

(f(u)− f(uk)− f ′(uk)R)R

∣∣∣∣ ≤ 1

ε2
C∥R∥2+p

2+p ≤ 1

ε2
C1∥R∥p∥∇R∥2,

where we have used the interpolation result [14, Lemma 1]. We also have
∣∣∫

Ω
δkR

∣∣ ≤
∥δk∥∞∥R∥ = O(εk)∥R∥, so that

(6.4)
∥R∥ d

dt
∥R∥ ≤ −

∫
Ω

|∇R|2 + 1

ε2

∫
Ω

f ′(uk)R
2

+
1

ε2
C1∥R∥p∥∇R∥2 +O(εk)∥R∥ − 1

ε2
Λ.

We shall estimate Λ in the following subsection. As mentioned before, this term is the
main difference with the case of a strictly nonlocal Lagrange multiplier: its analogous for
equation (1.11) is (ελ− ελk)

∫
Ω
R which vanishes, see [14].

Since k > max(N, 4) we have k − 1
2 >

4
p = 4

min( 4
N ,1)

, so that the second estimate in
(6.1) allows to define tε > 0 by

(6.5) tε := sup
{
t > 0, ∀ 0 ≤ τ ≤ t, ∥R(·, τ)∥ ≤ (2C1)

−1/pε4/p
}
.

We need to prove that tε = T and that the estimate O(ε4/p) is actually improved to
O(εk−

1
2 ). In the sequel we work on the time interval [0, tε].

6.1. Error estimates between the nonlocal/local Lagrange multipliers. It follows from
(2.9) that the term Λ under consideration is recast as

(6.6) Λ =
A

B
E − Ak

Bk
Ek +

O(εk+2)

Bk
Ek,
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where

Ak = Ak(t) :=

∫
Ω

f(uk), Bk = Bk(t) :=

∫
Ω

1− uk
2, Ek = Ek(t) :=

∫
Ω

(1− uk
2)R,

and A, B, E the same quantities with u in place of uk.

Lemma 6.1 (Some expansions). We have, as ε→ 0,

Ak = ε2α+O(ε3), Bk = εβ +O(ε2),

where

α = α(t) :=

∫
U

N−1∑
i=1

κi(s, t) ds

∫
R
ρf(θ0(ρ)) dρ, β := 2

√
2|U |,

and

Ek = O(
√
ε∥R∥).

Proof. We have seen in Section 5 that uk = u∗k +O(εk+2) so it is enough to deal with A∗
k,

B∗
k and E∗

k . The lemma is then rather clear from the expansions of Section 4. We have

A∗
k =

∫
|d(x,t)|≤2

√
ε

f(u∗k)(x, t) dx =

∫
|d(x,t)|≤

√
ε

f(u∗k)(x, t) dx+O(e
−

√
2

2
√

ε )

=

∫
U

∫
|ρ|≤1/

√
ε

f(θ0(ρ) +O(ε2))εJε(ρ, s, t) dsdρ+O(e
−

√
2

2
√

ε ).

Using Jε(ρ, s, t) = 1 + ερ
∑N−1

i=1 κi(s, t) + O(ε2) and
∫
|ρ|≤1/

√
ε
f(θ0(ρ)) dρ = 0 (odd

function), one obtains the estimate for A∗
k. The estimate for B∗

k follows the same lines and
is omitted. Last, the Hölder inequality yields |Ek| ≤ (

∫
Ω
(1−uk2)2)1/2∥R∥ = O(

√
ε∥R∥)

since, again, dx = εJε(ρ, s, t) ds dρ. �

As a first consequence of the above lemma, it follows from (6.6) that

(6.7) Λ =
A

B
E − Ak

Bk
Ek +O(εk+

3
2 )∥R∥.

Next, in view of the above lemma, u = uk +R and ∥R∥ = O(ε4/p), we can thus perform
the following expansions

A = Ak +

∫
Ω

(1− 3uk
2)R− 3

∫
Ω

ukR
2 −

∫
Ω

R3

= Ak + 3Ek − 3

∫
Ω

ukR
2 +O(∥R∥2+p

2+p),

since
∫
Ω
R = 0,

B−1 = Bk
−1

(
1−

2
∫
Ω
ukR

Bk
−
∫
Ω
R2

Bk

)−1

= Bk
−1

(
1 +

2
∫
Ω
ukR

Bk
+

∫
Ω
R2

Bk
+

(
2
∫
Ω
ukR

Bk

)2

+O
(
∥R∥3

ε3

))
,

and

E = Ek − 2

∫
Ω

ukR
2 +O(∥R∥2+p

2+p).
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It follows that, using Ek = O(
√
ε∥R∥) and Ak = O(ε2) (see Lemma 6.1),

AE =AkEk − 2Ak

∫
Ω

ukR
2 +O(ε2∥R∥2+p

2+p) + 3Ek
2 − 6Ek

∫
Ω

ukR
2

+O(
√
ε∥R∥ ∥R∥2+p

2+p)− 3Ek

∫
Ω

ukR
2 +O(∥R∥4) +O(∥R∥2 ∥R∥2+p

2+p)

+O(∥R∥2+p
2+p

√
ε∥R∥) +O(∥R∥2+p

2+p ∥R∥2) +O(∥R∥4+2p
2+p )

=AkEk + 3Ek
2 − 9Ek

∫
Ω

ukR
2 − 2Ak

∫
Ω

ukR
2 +O(ε2∥R∥2+p

2+p) +O(∥R∥3),

since ∥R∥2+p
2+p = O(∥R∥2). Now, using the above expressions, we aim at expanding A

BE−
Ak

Bk
Ek. For the convenience of the reader let us explain how to handle two of the terms

appearing in the computations: the estimates in Lemma 6.1 yield, as ε→ 0,

2
∫
Ω
ukR

Bk
3Ek

2 = O
(
∥R∥
ε

)
O(ε∥R∥2) = O(∥R∥3),

and
2
∫
Ω
ukR

Bk
(−9)Ek

∫
Ω

ukR
2 = O

(
∥R∥
ε

)
O(

√
ε∥R∥ ∥R∥2) = O

(
∥R∥4√
ε

)
= O(∥R∥3),

the last estimate following from the definition of tε in (6.5). Using similar arguments to
treat other terms, we obtain

A

B
E − Ak

Bk
Ek =Bk

−1
[
3Ek

2 − 9Ek

∫
Ω

ukR
2 +

Ak

Bk
Ek

∫
Ω

2ukR

− 2Ak

∫
Ω

ukR
2 +O(ε2∥R∥2+p

2+p) +O(∥R∥3)
]
,

which in turn implies

A

B
E − Ak

Bk
Ek =

3Ek
2 − 9Ek

∫
Ω
ukR

2 + Ak

Bk
Ek

∫
Ω
2ukR

Bk

− Ak

Bk

∫
Ω

2ukR
2 +O(ε∥R∥2+p

2+p) +O(ε−1∥R∥3).

Using Lemma 6.1 again, this implies

(6.8)
A

B
E − Ak

Bk
Ek =

3Ek
2 + Ak

Bk
Ek

∫
Ω
2ukR

Bk
− Ak

Bk

∫
Ω

2ukR
2

+O(ε∥R∥2+p
2+p) +O(ε−1∥R∥3).

The term −Ak

Bk

∫
Ω
2ukR

2 is harmless since it will be handled by the spectrum estimate
Lemma 6.3. Let us analyze the fraction which is the worst term. For M > 1 to be selected
later, define ∥R∥T , ∥R∥T c , the L2 norms ofR in the tube T := {(x, t) : |d(x, t)| ≤Mε},
the complement of the tube respectively:

∥R∥2T :=

∫
{|d(x,t)|≤Mε}

R2(x, t) dx, ∥R∥2T c :=

∫
{|d(x,t)|≥Mε}

R2(x, t) dx.

Observe that the O(ε) size of the tube allows to write∣∣∣∣∫
T
ukR

∣∣∣∣ ≤ (∫
T
uk

2

)1/2(∫
T
R2

)1/2

≤ C
√
ε∥R∥T .

Hence, using Lemma 6.1, cutting
∫
Ω
=
∫
T +

∫
T c , we get∣∣∣∣Ak

Bk
Ek

∫
Ω

2ukR

∣∣∣∣ ≤Cε|Ek|(
√
ε∥R∥T + ∥R∥T c)

≤Cε
√
ε|Ek| ∥R∥T + Cε2/5Ek

2 + Cε8/5∥R∥2T c .
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As a result

(6.9)

3Ek
2 + Ak

Bk
Ek

∫
Ω
2ukR

Bk
≥ (3− Cε2/5)Ek

2 − Cε
√
ε|Ek| ∥R∥T

Bk
− Cε3/5∥R∥2T c

≥Ek
2 − Cε

√
ε|Ek| ∥R∥T

Bk
− Cε3/5∥R∥2T c ,

for small ε > 0. Now, observe that

(6.10) Ek
2 − Cε

√
ε|Ek| ∥R∥T ≥

{
0 if |Ek| ≥ Cε

√
ε∥R∥T

−C2ε3∥R∥2T if |Ek| ≤ Cε
√
ε∥R∥T .

Remark 6.2. The above inequality is the crucial one. One can interpret it as follows.
Following [8, Proposition 2], we understand that Ek behaves like the integral on the hy-
persurface Γt:

ε

∫
d(x,t)=0

R(x, t) dσ.

If |Ek| =
∣∣∫

Ω
(1− uk

2)R
∣∣ is large w.r.t. O(ε

√
ε∥R∥T ) then Ek

2 −Cε
√
ε|Ek|∥R∥T ≥ 0,

which has the good sign to control the L2 norm of R. In other words, if the error “intends”
at concentrating on the hypersurface, the situation is quite favorable. On the other hand,
if |Ek| =

∣∣∫
Ω
(1− uk

2)R
∣∣ is small w.r.t. O(ε

√
ε∥R∥T ) then we get the negative control

−O(ε2∥R∥2T ) (after dividing byBk) which is enough for the Gronwall’s argument to work.

Putting together (6.7), (6.8), (6.9), (6.10) and Bk = 2
√
2|U |ε+O(ε2), we come to the

conclusion that

(6.11)
Λ ≥− Ak

Bk

∫
Ω

2ukR
2 − Cε3/5∥R∥2T c − Cε2∥R∥2T

+O(εk+
3
2 )∥R∥+O(ε∥R∥2+p

2+p) +O(ε−1∥R∥3).

6.2. Proof of Theorem 2.3. Equipped with the accurate estimate (6.11), we can now con-
clude the proof of the error estimate by following the lines of [14]. Combining (6.4) with
(6.11) and using the interpolation inequality ∥R∥2+p

2+p ≤ C∥R∥p∥∇R∥2, ∥R∥T ≤ ∥R∥ and
∥R∥ = O(ε2) (thanks to the definition of tε), we discover

∥R∥ d
dt

∥R∥ ≤ −
∫
Ω

|∇R|2 + 1

ε2

∫
Ω

(
f ′(uk) +

Ak

Bk
2uk

)
R2

+
1

ε2
2C1∥R∥p∥∇R∥2 +

1

ε2
Cε3/5∥R∥2T c

+ C∥R∥2 +O(εk−
1
2 )∥R∥.

Since ε2
(
−
∫
Ω
|∇R|2 + 1

ε2

∫
Ω
(f ′(uk) +

Ak

Bk
2uk)R

2
)
≤ −ε2∥∇R∥2 + C∥R∥2, we get

(6.12)

∥R∥ d
dt

∥R∥ ≤(1− ε2)

(
−
∫
Ω

|∇R|2 + 1

ε2

∫
Ω

(
f ′(uk) +

Ak

Bk
2uk

)
R2

)
− ε2∥∇R∥2 + 1

ε2
2C1∥R∥p∥∇R∥2

+
1

ε2
Cε3/5∥R∥2T c + C∥R∥2 +O(εk−

1
2 )∥R∥

≤(1− ε2)

(
−
∫
Ω

|∇R|2 + 1

ε2

∫
Ω

(
f ′(uk) +

Ak

Bk
2uk

)
R2

)
+

1

ε2
Cε3/5∥R∥2T c + C∥R∥2 +O(εk−

1
2 )∥R∥,
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in view of the definition of tε in (6.5). In the above inequality, let us write
∫
Ω
=
∫
T +

∫
T c .

In the complement of the tube, observe that∫
T c

(
f ′(uk) +

Ak

Bk
2uk + Cε3/5

)
R2 =

∫
{|d(x,t|≥Mε}

(
f ′(uk) +O(ε3/5)

)
R2,

is nonpositive if M > 0 is large enough; this follows from the form of the constructed
uk in Section 5 — roughly speaking we have uk(x, t) = θ0

(
d(x,t)+O(ε2)

ε

)
+ O(ε2)—

θ0(±∞) = ±1 and f ′(±1) < 0. As a result we collect

(6.13)
∥R∥ d

dt
∥R∥ ≤(1− ε2)

(
−
∫
T
|∇R|2 + 1

ε2

∫
T

(
f ′(uk) +

Ak

Bk
2uk

)
R2

)
+ C∥R∥2 +O(εk−

1
2 )∥R∥.

In some sense, the problem now reduces to a local estimate since the linearized opera-
tor −∆ − ε−2(f ′(uk) +

Ak

Bk
2uk) arises when studying the local unbalanced Allen-Cahn

equation

∂tuε = ∆uε +
1

ε2

(
f(uε)−

Ak

Bk
(1− uε

2)

)
,

whose singular limit is “mean curvature plus a forcing term” (see, among others, [2]). To
conclude we need a spectrum estimate of the unbalanced linearized operator around the
approximate solution uk, namely −∆− ε−2(f ′(uk)+

Ak

Bk
2uk). This directly follows from

the result of [13] for the balanced case. For related results on the spectrum of linearized
operators for the Allen-Cahn equation or the Cahn-Hilliard equation, we also refer to [7],
[5, 6], [24].

Lemma 6.3 (Spectrum of the unbalanced linearized operator around uk [13]). There is
C∗ > 0 such that

−
∫
T
|∇R|2 + 1

ε2

∫
T

(
f ′(uk) +

Ak

Bk
2uk

)
R2 ≤ C∗

∫
T
R2,

for all 0 < t ≤ T , all 0 < ε ≤ 1, all R ∈ H1(Ω) with
∫
Ω
R = 0.

Proof. Observe that

uk(x, t) =

{
θ0

(
dk(x,t)

ε

)
+O(ε2) if |d(x, t)| ≤

√
ε

±1 +O(εk+1) if |d(x, t)| ≥
√
ε.

Lemma 6.1 yields Ak

Bk
= εα(t)β + O(ε2) so that we can write f ′(uk) + Ak

Bk
2uk = f ′(uk),

for some uk such that

uk(x, t) =

{
θ0

(
dk(x,t)

ε

)
− εα(t)3β θ1

(
dk(x,t)

ε

)
+O(ε2) if |d(x, t)| ≤

√
ε

±1 +O(ε) if |d(x, t)| ≥
√
ε,

where θ1 ≡ 1. In particular
∫
R θ1(θ0

′)2f ′′(θ0) =
∫
R(θ0

′)2f ′′(θ0) = 0 (odd function)
so that uk has the correct shape for [13] to apply: see [4, formula (3.8) and proof of
Theorem 5.1], [14, formula (16)] or [22, Section 4] for very related arguments. Details are
omitted. �

Combining the above lemma and (6.13), we end up with

d

dt
∥R∥ ≤ C∥R∥+ Cεk−

1
2 .

The Gronwall’s lemma then implies that, for all 0 ≤ t ≤ tε,

∥R(·, t)∥ ≤ (∥R(·, 0)∥+ εk−
1
2 )eCtε = O(εk−

1
2 ),
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in view of (6.1). Since k− 1
2 >

4
p , this shows that tε = T and that the estimate O(ε4/p) is

actually improved to O(εk−
1
2 ). This completes the proof of Theorem 2.3. �
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PELLIER CEDEX 5, FRANCE

E-mail address: alifrang@math.univ-montp2.fr


