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We consider a population structured by a space variable and a phenotypical trait, submitted to
dispersion, mutations, growth and nonlocal competition. This population is facing an environmental
gradient: to survive at location x, an individual must have a trait close to some optimal trait yopt(x).
Our main focus is to understand the effect of a nonlinear environmental gradient.

We thus consider a nonlocal parabolic equation for the distribution of the population, with
yopt(x) = εθ(x), 0 < |ε| � 1. We construct steady states solutions and, when θ is periodic,
pulsating fronts. This requires the combination of rigorous perturbation techniques based on a
careful application of the implicit function theorem in rather intricate function spaces. To deal with
the phenotypic trait variable y we take advantage of a Hilbert basis of L2(R) made of eigenfunctions
of an underlying Schrödinger operator, whereas to deal with the space variable x we use the Fourier
series expansions.

Our mathematical analysis reveals, in particular, how both the steady states solutions and the
fronts (speed and profile) are distorted by the nonlinear environmental gradient, which are impor-
tant biological insights.

Key Words: structured population, nonlocal reaction-diffusion equation, steady states, pulsating
fronts, perturbation techniques.

AMS Subject Classifications: 35K57, 45K05, 35B10, 92D15.

1 Introduction

This paper is concerned with the nonlocal parabolic equation

∂tu = ∂xxu+ ∂yyu+ u

(
1−A2 (y − yopt(x))2 −

∫
R
u(t, x, y′) dy′

)
, t > 0, x ∈ R, y ∈ R, (1)

with
yopt(x) := εθ(x), θ ∈ Cb(R), (2)

which serves as a model in evolutionary biology. Here u = u(t, x, y) denotes the distribution of a
population which, at each time t > 0, is structured by a space variable x ∈ R, and a phenotypic trait
y ∈ R. This population is submitted to spatial dispersion, mutations, growth and competition. The
spatial dispersion and the mutations are modeled by diffusion operators, namely ∂xxu and ∂yyu. The
intrinsic per capita growth rate of the population depends on both the location x and the phenotypic
trait y. It is modeled by the confining term 1 − A2 (y − yopt(x))2, where A > 0 is a constant that
measures the strength of the selection. This corresponds to a population living in an environmental
gradient: to survive at location x, an individual must have a trait close to the optimal trait yopt(x) =
εθ(x). Finally, we consider a logistic regulation of the population distribution that is local in the spatial
variable x and nonlocal in the phenotypic trait y. In other words, we consider that there exists, at
each location, an intra-specific competition which takes place with all individuals whatever their trait.

The main input of this work is to analyze the case of a nonlinear environmental gradient. To do
so, we consider that the optimal trait is described by (2) with 0 < |ε| � 1, which corresponds to a
nonlinear perturbation of the linear case ε = 0. First, under some natural assumptions, we construct
steady states solutions, shedding light on how Gaussian solutions (corresponding to ε = 0) are distorted
by the nonlinear perturbation. Next, we consider the case of a periodic perturbation, θ ∈ C(R/LZ) for
some L > 0, for which we construct pulsating fronts with a semi infinite interval of admissible speeds.

In ecology, an environmental gradient refers to a gradual change in various factors in space that
determine the favoured phenotypic traits. Environmental gradients can be related to factors such as
altitude, temperature, and other environment characteristics. It is now well documented that invasive
species need to evolve during their range expansion to adapt to local conditions [24], [36]. Such issues
are highly relevant in the context of the global warming [21], [23], or of the evolution of resistance of
bacteria to antibiotics [34], [9]. Theoretical models therefore need to incorporate evolutionary factors
[28], [37], [34]. In this context, let us mention the so-called “cane toad equation” which has led to rich
mathematical results [10], [16], [15], [18]. On the other hand, equations having the form of (1) were
developed in [40], [43], [42], [39].
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Before discussing propagation phenomena in (1), let us briefly recall that traveling fronts are par-
ticular solutions that consist of a constant profile connecting zero to “a non-trivial state” and shifting
at a constant speed. This goes back to the seminal works [26], [38] on the Fisher-KPP equation

∂tu = ∆u+ u(1− u), t > 0, x ∈ RN ,

and, among so many others, [6, 7], [25]. The construction of such solutions is much harder when the
equation does not enjoy the comparison principle. One then usually needs to use topological degree
arguments and the identification of the “non-trivial state” is typically missing, see e.g. [14], [2], [32] on
the nonlocal Fisher-KPP equation.

As far as the mathematical analysis of (1) is concerned, one has to deal with the fine interplay be-
tween the space variable x and the phenotypic trait y, the fact that the phenotypic space is unbounded,
and the nonlocal competition term. Because of the latter, equation (1) does not enjoy the comparison
principle and its analysis is quite involved since many techniques based on the comparison principle
— such as some monotone iterative schemes or the sliding method — are unlikely to be used.

Despite of that, the linear environmental gradient case, namely

yopt(x) = Bx, for some B ∈ R, (3)

is now rather well understood. In this case, depending on the sign of an underlying principal eigenvalue
[3], either the population gets extinct, or it is able to adapt progressively to uncrowded zones and invade
the environment. When propagation occurs, known results are the following. First, the B = 0 case
allows a separation of variables trick, from which a rather exhaustive analysis can be performed [13].
Roughly speaking, traveling fronts can be written in the form Γ0(y)U(x − ct), where Γ0(y) is an
underlying ground state or principal eigenfunction and U(z := x − ct) a Fisher-KPP traveling wave
with speed c. This fact will be precised and exploited later in the present work. On the other hand,
when B 6= 0, variables cannot be separated and careful estimates of the nonlocal competition term are
required. Thanks to rather sharp a priori estimates, Harnack and Bernstein type refined inequalities,
traveling fronts are constructed in [3] and the determinacy of the spreading speed in the associated
Cauchy problem is obtained in [1]. Very recently, accelerating invasions induced by initial heavy tails
of the population distribution — see [30] and [27] for related results in absence of evolution— have
been analysed in [41].

Last, let us mention that the case of a moving optimum

yopt(t, x) = B(x− cst), for some B ∈ R, cs > 0,

is also analyzed in [1]. This case serves as a model to study, e.g., the effect of global warming on the
survival and propagation of a species: the favorable areas are shifted by the climate change at a given
speed cs > 0. The outcome is that there is an identified critical climate speed c∗s ≥ 0 such that c > c∗s
implies extinction, whereas cs < c∗s implies survival and invasion.

Nevertheless, the case of nonlinear environmental gradients is of great importance for applications,
for instance in the context of development of resistance of pathogens to antibiotics. In this respect, let
us mention the experimental set up of [9] where, thanks to mutation, E. coli bacteria are able to cross
a four feet long petri dish on which the antibiotic concentration sharply increases3.

As far as we know no significant mathematical results exist for model (1) when the environmental
gradient yopt(x) is nonlinear. The reasons are, at least, threefold. First of all, it is much harder,
if possible, to relate the issue to a underlying eigenvalue problem. Second, it is expected that the
population may survive while being blocked in a restricted zone (so that invasion does not occur).
Last, if invasion occurs, tracking the propagation of the solution is far from obvious since, among
others, geometrical effects (via curvature) may appear along the optimal curve y = yopt(x).

Thus, in order to understand the situation where the optimal trait no longer depends linearly on
space, our strategy is to consider the case (2) with 0 < |ε| � 1, which we see as a nonlinear perturbation
of the case (3) with B = 0 studied in [13].

3see the striking movie at https://www.youtube.com/watch?v=yybsSqcB7mE
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Our first goal is to construct steady states, which we denote n = nε(x, y), to (1). To do so, we will
rely on rigorous perturbation techniques based on the implicit function theorem. We will also take
advantage of the orthonormal basis of L2(R) consisting of eigenfunctions of the underlying operator

− d2

dy2
− (1−A2y2).

This requires to work in rather intricate function spaces. Besides this rigorous theoretical construction,
asymptotic expansions combined with numerical explorations enable to capture the distortion of the
steady state by the nonlinear perturbation of the environmental gradient.

Our second goal is to analyze the propagation phenomena arising from model (1). To do so, for
θ being L-periodic, we construct pulsating fronts. These particular solutions were first introduced by
[44] in a biological context, and by Xin [49, 48, 47] in the framework of flame propagation, as natural
extensions, in the periodic framework, of the aforementioned traveling fronts. By definition, a pulsating
front is a speed cε ∈ R and a profile ũε(z, x, y), that is L-periodic in the x variable, such that

uε(t, x, y) := ũε(x− cεt, x, y)

solves equation (1) and such that, as z → ±∞, ũε(z, x, y) connects zero to a “non-trivial periodic state”,
a natural candidate being the steady state nε(x, y) constructed previously. Equivalently, a pulsating
front is a solution connecting zero to a “non-trivial periodic state”, and that satisfies the constraint

uε
(
t+

L

cε
, x, y

)
= uε(t, x− L, y), ∀(t, x, y) ∈ R3.

As far as monostable pulsating fronts are concerned, we refer among others to the seminal works of
Weinberger [46], Berestycki and Hamel [11]. Let us also mention [35], [12], [29], [31] for related results.
In contrast with these results and as mentioned above, model (1) does not enjoy the comparison
principle. In such a situation, construction of pulsating fronts in a Fisher-KPP situation was recently
achieved in [4] (see [19], [33] for an ignition type nonlinearity and a different setting). Another inherent
difficulty of the present situation is to deal with both variables x (space) and y (phenotypic trait). To
do so, we will first use the orthonormal basis of L2(R) mentioned above to deal with y and then use
the Fourier series expansions to deal with x. Again, this is combined with a careful use of rigorous
perturbation techniques based on the implicit function theorem. As far as we know, such perturbation
arguments to construct pulsating fronts are rather used in the ignition [8] or bistable cases [22]. Besides
this rigorous theoretical construction, our analysis reveals how the speed and profile of the fronts are
modified by the nonlinear perturbation of the environmental gradient, which are very relevant for
biological applications.

2 Main results

Letting
r(y) := 1−A2y2, A > 0, (4)

equation (1) is recast

∂tu = ∂xxu+ ∂yyu+ u

(
r (y − εθ(x))−

∫
R
u(t, x, y′) dy′

)
. (5)

Remark 1 (Quadratic choice). If r : R→ R is continuous and confining, that is lim|y|→∞ r(y) = −∞,
then the operator − d2

dy2
− r(y) is essentially self-adjoint on C∞c (R), and has discrete spectrum. There

exists an orthonormal basis {Γk}k∈N of L2(R) consisting of eigenfunctions, namely

−Γ′′k − r(y)Γk = λkΓk, ‖Γk‖L2 = 1,

with corresponding eigenvalues λ0 < λ1 ≤ λ2 ≤ · · · ≤ λk → +∞ of finite multiplicity. Assuming
that the confinement is, say, polynomial we may handle such per capita growth rate r as in [5]. For
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the clarity of the exposition (in particular some relations between the eigenfunctions are helpful, see
subsection 3.3) we have nonetheless decided to consider the quadratic case (4) which, anyway, reveals
all the possible features of the model.

In the sequel, we denote by (λ0,Γ0(y)) the principal eigenelements of − d2

dy2
− r(y), namely

−Γ′′0 − (1−A2y2)Γ0 = λ0Γ0 in R,
Γ0 > 0 in R,
||Γ0||L2 = 1,

that is

λ0 = A− 1, Γ0(y) =

(
A

π

) 1
4

e−
1
2
Ay2 .

We first state that, as soon as λ0 > 0 and |ε| � 1, extinction of the population occurs for rather
general initial data, including in particular the case of continuous compactly supported ones.

Proposition 2 (Extinction). Assume λ0 > 0. Let us fix 0 < µ0 < λ0 and µ0 +1 < a < A = λ0 +1. Let
θ ∈ Cb(R). Then there is ε0 > 0 such that, for any |ε| < ε0, the following holds: any global nonnegative
solution u = uε(t, x, y) of (5), starting from a initial data u0 = u0(x, y) such that

M = M(u0) := sup
(x,y)∈R2

u0(x, y)e
1
2
ay2 < +∞, (6)

goes extinct exponentially fast as t→ +∞. More precisely, we have

0 ≤ u(t, x, y) ≤Me−µ0te−
1
2
ay2 , for all t ≥ 0, x ∈ R, y ∈ R.

When λ0 ≥ 0, extinction in the linear case ε = 0 is easily proved thanks to the comparison principle
since the nonlocal term is “harmless” when searching an estimate from above. Hence, when λ0 > 0,
the proof of Proposition 2 follows from a rather direct perturbation argument. Notice that the critical
case λ0 = 0 is much more subtle, since more sensitive to perturbations, and left open here.

We now focus on the case λ0 < 0, for which survival is expected when |ε| � 1. We thus inquire for
nonnegative and nontrivial steady state n = nε(x, y) solving

∂xxn+ ∂yyn+ n

(
r (y − εθ(x))−

∫
R
n(x, y′) dy′

)
= 0. (7)

Notice that, in this paper, we reserve the notations n = nε(x, y) to steady states and u = uε(t, x, y)
to time dependent solutions. Observe first that, when ε = 0, an appropriate renormalization of the
ground state Γ0 = Γ0(y) provides a positive solution: it is obvious that

n0(y) := ηΓ0(y), η :=
−λ0

‖Γ0‖L1

> 0, (8)

solves (7) when ε = 0. Our first main result is concerned with the construction of steady states when
|ε| is small enough.

Theorem 3 (Steady states). Assume λ0 < 0. Let θ ∈ Cb(R). Let us fix β > 13
4 and define the function

space Y = Yβ given by (29), equipped with the norm (31).
Then there are ε0 > 0 and r1 > 0 such that, for any |ε| < ε0,

there is a unique nε ∈ Y such that ‖nε − n0‖Y ≤ r1 and nε solves (7). (9)

Additionally, we have
nε = n0 + εn1 + o(ε) in Y , as ε→ 0, (10)

where
n1 = n1(x, y) := A(ρA ∗ θ)(x)yn0(y), (11)
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with ρA the probability density given by

ρA(z) :=
1

2

√
2Ae−

√
2A|z|. (12)

If we assume further that θ ∈ Cmb (R) for some m ≥ 1, then the same conclusions hold true with Y
replaced by Ym given by (53).

The proof relies on rigorous perturbation techniques, and involves rather intricate function spaces,
such as Y ( C2

b (R2), Ym ( C2+m
b (R2), which are precisely defined in (29), (53).

The role of β in the above result is the following. As explained previously, we look after a solution
in the form of a Hilbert series, see (41). After finding the coordinates, we need to “reconstruct” the
solution and prove it belongs to Y (regularity and decay estimates). This requires β > 13

4 to ensure
the uniform convergence of some series, see the end of subsection 4.2.

The positivity of the constructed steady state is not provided by our proof. Nevertheless, it can be
proved a posteriori in some prototype situations for the perturbation θ = θ(x), in particular when it
is periodic or localized. To state this, we denote

CLper(R) := {f ∈ C(R) : ∀x ∈ R, f(x+ L) = f(x)}, for L > 0,

and
C0(R) := {f ∈ C(R) : lim

|x|→+∞
f(x) = 0}.

Theorem 4 (Positive steady states, the periodic case). Let the conditions of Theorem 3 hold and
assume further that θ ∈ CLper(R) for some L > 0. Then, the steady states nε = nε(x, y) constructed
in Theorem 3 are L-periodic with respect to the x variable. Furthermore, up to reducing ε0 > 0, there
holds

∀a > 0,∃C > 0,∀|ε| < ε0, ∀(x, y) ∈ R2, 0 < nε(x, y) ≤ Ce−a|y|. (13)

Theorem 5 (Positive steady states, the localized case). Let the conditions of Theorem 3 hold and
assume further that θ ∈ C0(R). Then, the steady states nε = nε(x, y) constructed in Theorem 3 satisfy
nε−n0 ∈ Ỹ , where the function space Ỹ is given by (56) and equipped with the norm (57). In particular,

nε(x, y)→ n0(y), as |x| → +∞, uniformly w.r.t. y ∈ R. (14)

Furthermore, up to reducing ε0 > 0, there holds

∀a > 0,∃C > 0,∀|ε| < ε0,∀(x, y) ∈ R2, 0 < nε(x, y) ≤ Ce−a|y|. (15)

The distortion of the positive steady state by the nonlinear (periodic or localized) perturbation
θ = θ(x) is encoded in (10)—(11) and will be discussed in details in subsections 6.1 an 6.2.

Next, still assuming λ0 < 0, we enquire on the existence of fronts for equation (5). To deal with
the ε = 0 case, let us recall the well-known fact concerning the Fisher-KPP traveling fronts: for any

c0 ≥ c∗0 := 2
√
−λ0 > 0,

there is a unique (up to translation) profile U = U(z) solving
U ′′ + c0U

′ − λ0U(1− U) = 0 on R,
U(−∞) = 1,

U(+∞) = 0.

(16)

which moreover satisfies U ′ < 0. Equipped with a Fisher-KPP front (c0, U), a straightforward compu-
tation shows that, when ε = 0,

u0(x− c0t, y) := U(x− c0t)n
0(y)

6



solves (5), where n0 is the ground state given by (8). As explained above, this corresponds to a
separation of the variables z = x− c0t and y. In other words, the profile n0(y) invades the trivial state
along the x axis at the spreading speed c0.

Our second main result is concerned with the case θ ∈ CLper(R), for which we construct fronts when
|ε| is small enough. Because of the periodic term εθ(x) in (5), we look for a pulsating front of the form
uε(x− cεt, x, y) with uε = uε(z, x, y) satisfying

uε(z, ·, y) ∈ CLper(R) ∀(z, y) ∈ R2,

uε(−∞, x, y) = nε(x, y) uniformly w.r.t. (x, y) ∈ R2,

uε(+∞, x, y) = 0 uniformly w.r.t. (x, y) ∈ R2,

(17)

where nε = nε(x, y) is the (periodic in x) steady state provided by Theorem 4. That is, uε spreads at
the perturbed speed cε and connects the steady state nε to the trivial one.

Theorem 6 (Pulsating fronts). Assume λ0 < 0. Let us fix c0 ≥ c∗0 := 2
√
−λ0 and consider U =

U(z) the unique (up to translation) profile solving (16). Let us fix β > 19
4 and γ > 3. Assume

θ ∈ Ck,δ(R) ∩ CLper(R) with L > 0 and where k ∈ N, 0 ≤ δ < 1 satisfy k + δ > γ + 1
2 . Let nε be the

steady state solving (7) and obtained from Theorem 4.
Then there is ε0 > 0 such that, for any |ε| < ε0, there are a speed cε > 0 and a profile uε =

uε(z, x, y) ∈ C2
b (R3) such that{

uε satisfies (17),

(t, x, y) 7→ uε(x− cεt, x, y) solves (5).

Additionally, we have

|cε − c0|+ sup
(z,x,y)∈R3

∣∣∣(1 + y2)eb|z|
(
uε(z, x, y)− U(z)nε(x, y)

)∣∣∣→ 0, as ε→ 0. (18)

for some b > 0.

An inherent difficulty to the construction of pulsating fronts is that the underlying elliptic operator,
see (64), is degenerate. This requires to consider a regularization, see (65), via a parameter 0 < µ� 1.
For a fixed such µ, we use rigorous perturbation techniques (from the ε = 0 situation), that involve
very intricate function spaces, which are precisely defined in Section 5. To deal with the phenotypic
trait variable y we take advantage of a Hilbert basis of L2(R) made of eigenfunctions of an underlying
Schrödinger operator, whereas to deal with the space variable x we use the Fourier series expansions.
Last, thanks to a judicious choice of function spaces, we can let the regularization parameter µ → 0
and then catch the desired pulsating front solution for a nontrivial range of small |ε|. We refer to
Remark 15 for more technical and precise details. Notice also that the uniqueness is lost through the
µ→ 0 limit.

Let us comment on the issue of the positivity of the constructed pulsating front which is not
provided by our proof. In a related but different framework, a kinetic equation as a perturbation of
a Fisher-KPP equation was considered in [20], see also [17]. Based on some stability results for the
Cauchy problem, the authors of [20] recover a posteriori the positivity of super-critical traveling waves,
while in [17] the positivity follows from the construction. However, such strategies heavily rely on the
comparison principle which does not hold true for problem (1). One might be tempted to adapt the
argument of subsection 4.5 which proves a posteriori the positivity of the constructed steady state, but
this would require a precise control of the tail of the front as z → +∞, which is not reachable by our
construction, nor by an adjustment of it. Nevertheless, we believe that a precise a priori argument,
in the spirit of [29], may connect the “positivity issue” with some “minimal speed issue” denoted c∗ε.
Equipped with this, we conjecture that, up to reducing ε0 > 0, one may prove a posteriori the positivity
of the constructed pulsating front as soon as c0 > c∗0 = 2

√
−λ0. In other words, the positivity should

not be lost, at least when we perturb from a super-critical traveling front. This is a very delicate issue,
that would require lengthy arguments, and left here as an open question. However, this conjecture is
supported by some numerical simulations in subsection 6.4.
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Our analysis, see subsection 6.3, reveals that

cε = c0 + o(ε), as ε→ 0. (19)

In other words, the perturbation of the speed of the front by the periodic nonlinearity θ = θ(x) vanishes
at the first order with respect to ε, which is a relevant biological information. This could be guessed from
the observation that replacing (y, ε) with (−y,−ε) leaves the model unchanged. We also conjecture
cε < c0 when 0 6= |ε| � 1, which is supported by some numerical explorations in subsection 6.4. On the
other hand, the distortion of the profile of the front is less predictable, but our mathematical analysis
provides some clues. We refer to Example 32 in subsection 6.3.

The organization of the paper is as follows. In Section 3, we prove the extinction result, namely
Proposition 2, and present some useful tools for the following, in particular some spectral properties.
The steady states are constructed in Section 4 through the proofs of Theorem 3, Theorem 4 and
Theorem 5. In Section 5, we construct pulsating fronts by proving Theorem 6. Last, in Section 6, we
present some biological insights of our results, together with some numerical explorations.

3 Preliminaries

3.1 Extinction result

We here consider the case λ0 > 0 for which we prove extinction, as stated in Proposition 2.

Proof of Proposition 2. For M ≥ 0 given by (6), we consider

φ(t, y) := Me−µ0te−
1
2
ay2

which satisfies

∂tφ− ∂xxφ− ∂yyφ− r(y − εθ(x))φ =
[
(A2 − a2)y2 − 2εA2θ(x)y + ε2A2θ2(x) + a− 1− µ0

]
φ.

The discriminant of the quadratic polynomial in y is 4A2a2θ2(x)ε2 − 4(A2 − a2)(a− 1− µ0), which is
uniformly (with respect to x ∈ R) negative for |ε| ≤ ε0 for ε0 > 0 sufficiently small (recall that θ is
bounded). As a result

∂tφ− ∂xxφ− ∂yyφ− r(y − εθ(x))φ ≥ 0 ≥ ∂tu− ∂xxu− ∂yyu− r(y − εθ(x))u.

Since we know from (6) that φ(0, y) ≥ u0(x, y), we deduce from the comparison principle that
u(t, x, y) ≤ φ(t, y), which concludes the proof.

3.2 Implicit Function Theorem

We recall the Implicit Function Theorem, see [50, Theorem 4.B] for instance.

Theorem 7 (Implicit Function Theorem). Let X,Y, Z be Banach spaces over K = R or K = C with
their respective norms ||.||X , ||.||Y and ||.||Z . Let U be a open neighborhood of (0, 0) in X × Y . Let
F : U → Z be a map. Suppose that

(i) F (0, 0) = 0, and F is continuous at (0, 0),

(ii) DyF exists as a partial Fréchet derivative on U , and DyF is continuous at (0, 0),

(iii) DyF (0, 0) : Y → Z is bijective.

Then the following are true:

• There are r0 > 0 and r1 > 0 such that, for every x ∈ X satisfying ||x||X < r0, there is a unique
y(x) ∈ Y for which ||y(x)||Y ≤ r1 and F (x, y(x)) = 0.

• If F is Ck on U with 0 ≤ k ≤ ∞, then x 7→ y(x) is also Ck on a neighborhood of 0.
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3.3 Linear material

In this subsection we fix A > 0 and consider the operator Hw := −w′′−(1−A2y2)w, which corresponds
to the harmonic oscillator. The following is well-known.

Proposition 8 (Eigenelements of the harmonic oscillator). The operator Hw := −w′′ − (1− A2y2)w
admits a family of eigenelements (λi,Γi)i∈N, where

λi = −1 + (2i+ 1)A, (20)

and Γi(y) = CiHi(
√
Ay)e−

1
2
Ay2. Here (Hi)i∈N denotes the family of Hermite polynomials, that is the

unique family of real polynomials satisfying∫
R
Hi(x)Hj(x)e−x

2
dx = 2ii!

√
πδij , degHi = i,

and

Ci =

(
A

π

)1/4
√

1

2ii!
(21)

a normalization constant so that ||Γi||L2 = 1.
Additionally, the family (Γi)i∈N forms a Hilbert basis of L2(R).

We now present some relations between the eigenfunctions, which will prove useful in our proofs.

Lemma 9 (Some linear relations). For any integer i, there holds

yΓi(y) = p+
i Γi+1(y) + p−i Γi−1(y), p+

i :=

√
i+ 1

2A
, p−i :=

√
i

2A
. (22)

and

Γ′i(y) = q+
i Γi+1(y) + q−i Γi−1(y), q+

i = −
√

(i+ 1)A

2
, q−i =

√
iA

2
. (23)

with the conventions p−0 Γ−1(y) ≡ q−0 Γ−1(y) ≡ 0.

Proof. The Hermite polynomials are known to satisfy the recursion relation

2xHi(x) = Hi+1(x) + 2iHi−1(x).

Multiplying this by Ci and setting x =
√
Ay, we get 2

√
AyΓi(y) = Ci

Ci+1
Γi+1(y) + 2iCi

Ci−1
Γi−1(y) which,

combined with (21), proves (22).
The Hermite polynomials are known to satisfy the relations

H ′i(x) = 2iHi−1(x), 2xHi(x) = Hi+1(x) + 2iHi−1(x).

Differentiating the expression Γi(y) = CiHi(
√
Ay)e−

1
2
Ay2 and using the above relations, we reach

Γ′i(y) = Ci

(
i
√
AHi−1(

√
Ay)− 1

2

√
AHi+1(

√
Ay)

)
e−

1
2
Ay2 =

i
√
ACi

Ci−1
Γi−1(y)−

√
ACi

2Ci+1
Γi+1(y),

which, combined with (21), proves (23).

We pursue with some L∞ and L1 estimates on eigenfunctions, possibly with some polynomial
weight.

Lemma 10 (L∞ and L1 estimates). There is C = C(A) > 0 such that, for all i ∈ N,

||Γi||L1 ≤ Ci1/4, (24)

||Γi||L∞ ≤ Ci1/4, (25)

together with
||Γ′i||L∞ ≤ Ci3/4, ||Γ′′i ||L∞ ≤ Ci5/4, (26)

and
||y2Γi||L∞ ≤ Ci5/4, ||y4Γi||L∞ ≤ Ci9/4. (27)
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Proof. The non so standard L1 estimate (24) can be found in [5, Proposition 2.4], whereas the L∞ esti-
mate (25) can be found in [5, Proposition 2.6]. Next, estimate (26) easily follows from the combination
of (23) and (25), whereas estimate (27) easily follows from (22) and (25). Details are omitted.

Throughout this paper, we denote mi the “mass” of the i-th eigenfunction, namely

mi :=

∫
R

Γi(y)dy. (28)

4 Construction of steady states

In this section, we prove Theorem 3 on steady states, Theorem 4 on the periodic case, and Theorem
5 on the localized case.

We look after a steady state solution to (7) in the perturbative form nε(x, y) = n0(y) + hε(x, y),
where n0 = n0(y), given by (8), is a steady state when ε = 0. From straightforward computations, we
are left to find hε satisfying F (ε, hε) = 0, where

F (ε, h) := hxx + hyy + n0

(
2A2εθ(x)y −A2ε2θ2(x)−

∫
R
h(x, y′)dy′

)
+ h

(
1−A2(y − εθ(x))2 + λ0 −

∫
R
h(x, y′)dy′

)
.

We thus aim at applying the Implicit Function Theorem, namely Theorem 7, to F : R× Y → Z where
the function spaces Y,Z are to be appropriately chosen.

4.1 Function spaces

Let us fix β > 13
4 . Recall that Γi = Γi(y) are the eigenfunctions defined in subsection 3.3. We set

Y :=

h ∈ C2(R2)

∣∣∣∣∣∣∣
∃C > 0, ∀|α| ≤ 2, |Dαh(x, y)| ≤ C

(1+y2)2
on R2,

∃K > 0, ∀k ≤ 2, ∀i ∈ N, sup
x∈R

∣∣∫
RD

k
xh(x, y)Γi(y)dy

∣∣ ≤ K
(1+i)β+1−k/2

 , (29)

and

Z :=

f ∈ C(R2)

∣∣∣∣∣∣∣
∃C > 0, |f(x, y)| ≤ C

1+y2
on R2,

∃K > 0, ∀i ∈ N, sup
x∈R

∣∣∫
R f(x, y)Γi(y)dy

∣∣ ≤ K
(1+i)β

 , (30)

equipped with the norms

||h||Y :=
∑
|α|≤2

sup
(x,y)∈R2

∣∣(1 + y2)2Dαh(x, y)
∣∣+

2∑
k=0

||Dk
xh||β+1−k/2, (31)

and
||f ||Z := sup

(x,y)∈R2

∣∣(1 + y2)f(x, y)
∣∣+ ||f ||β, (32)

where, for m ∈ R, we define

||w||m := sup
i∈N

[
(1 + i)m sup

x∈R

∣∣∣∣∫
R
w(x, y)Γi(y)dy

∣∣∣∣] . (33)

Remark 11 (Choice of the function spaces). Let us comment on the spaces Y, Z and the two controls
appearing in their definition. The crux of the proof is to show that L := DhF (0, 0), given by (40), is
bijective from Y to Z: for every fixed f ∈ Z, there is a unique h ∈ Y such that Lh = f . First, thanks to
the controls on the y-tails, i.e. the first constraint in the definition of Y and Z, h(x, ·), f(x, ·) ∈ L2(R)
for all x ∈ R. This allows to decompose h and f along the eigenfunction basis (Γi)i∈N, leading to
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(41). From there we obtain an expression of hi = hi(x) given by (46)—(47). Next, the control on
fi(x) =

∫
R f(x, y)Γi(y)dy, i.e. the second constraint in the definition of Z, allows to prove the bounds

(49)—(51) for hi. This in turn allows to prove the control on the y-tails for h. This is done by using
(25)—(27) and by taking β > 13

4 .

In what follows, it is useful to keep in mind the straightforward estimates

∀h ∈ Y,∀|α| ≤ 2, ∀(x, y) ∈ R2,
∣∣∣Dkh(x, y)

∣∣∣ ≤ ||h||Y
(1 + y2)2

, (34)

∀f ∈ Z, ∀(x, y) ∈ R2, |f(x, y)| ≤ ||f ||Z
1 + y2

, (35)

and
∀h ∈ Y,∀x ∈ R,

∣∣∣∣∫
R
h(x, y)dy

∣∣∣∣ ≤ ||h||Y ∫
R

(1 + y2)−2dy =
π

2
||h||Y . (36)

Lemma 12 (Y and Z are Banach). The spaces Y given by (29), and Z given by (30), are Banach
spaces when equipped with their respective norm ||.||Y given by (31), and ||.||Z given by (32).

Proof. For the sake of completeness, let us give a short proof that Y is Banach, the proof for Z being
similar. Let (hn)n∈N be a Cauchy sequence in Y . Since the injection Y ↪→ C2

b (R2) is continuous and
C2
b (R2) is Banach, there is h ∈ C2

b (R2) such that hn → h in the norm ||.||C2
b (R2).

Let us prove that h ∈ Y . Set

Cn :=
∑
|α|≤2

sup
(x,y)∈R2

∣∣(1 + y2)2Dαhn(x, y)
∣∣ .

Since (hn) is Cauchy, the sequence (Cn)n∈N is bounded by some C ≥ 0. Then, for all |α| ≤ 2 and
(x, y) ∈ R2, there holds |Dαhn(x, y)| ≤ C

(1+y2)2
, and n→ +∞ yields

|Dαh(x, y)| ≤ C

(1 + y2)2
.

Similarly, the sequence
Kn :=

∑
k≤2

||Dk
xhn||β+1−k/2

is bounded by some K ≥ 0. Then, for all 0 ≤ k ≤ 2, there holds

∀i ∈ N, ∀x ∈ R,
∣∣∣∣∫

R
Dk
xhn(x, y)Γi(y)dy

∣∣∣∣ ≤ K

(1 + i)β+1−k/2 .

Given that |Dk
xhn(x, y)| ≤ C

(1+y2)2
, the dominated convergence theorem allows to let n → +∞ and

obtain that the above estimate also holds for h. We conclude that h ∈ Y .
Now, very classical arguments (that we omit) yield that hn → h in Y .

We conclude this subsection with a preliminary result, which in particular states that each “h-term”
appearing in F (ε, h) has its Z-norm controlled by the Y -norm of h. For better readability we denote
yh and y2h the functions (x, y) 7→ yh(x, y) and (x, y) 7→ y2h(x, y) respectively.

Lemma 13 (Controlling in Z the terms of F (ε, h)). There is C = C(A) > 0 such that, for all h ∈ Y ,

max
(
||h||Z , ||yh||Z , ||y2h||Z , ||hxx||Z , ||hyy||Z

)
≤ C||h||Y . (37)

Also, if f = f(x, y) ∈ Z and b = b(x) ∈ Cb(R), then

||bf ||Z ≤ ||b||L∞ ||f ||Z . (38)
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Proof. The proof of assertion (38) is obvious. As for (37), the estimates for h and hxx follow directly
from the definitions of Y , Z and their respective norms. In the sequel, C denotes a positive constant
that may change from line to line, but that always depends only on A.

Let us prove ||hyy||Z ≤ C||h||Y . Since
∣∣(1 + y2)hyy(x, y)

∣∣ ≤ ∣∣(1 + y2)2hyy(x, y)
∣∣ ≤ ||h||Y , it remains

to consider the second term appearing in the right hand side of (32), that is ||hyy||β . Integrating by
parts and using (23) we have∣∣∣∣∫

R
hyy(x, y)Γi(y)dy

∣∣∣∣ =

∣∣∣∣∫
R
h(x, y)Γ′′i (y)dy

∣∣∣∣
≤ q+

i q
+
i+1

∣∣∣∣∫
R
hΓi+2dy

∣∣∣∣+
(
q+
i q
−
i+1 + q−i q

+
i−1

) ∣∣∣∣∫
R
hΓidy

∣∣∣∣+ q−i q
−
i−1

∣∣∣∣∫
R
hΓi−2dy

∣∣∣∣
≤ C

√
(1 + i)(2 + i)

(1 + i)β+1
||h||Y ,

from the expressions of q±i and the fact that h ∈ Y so that ||h||β+1 ≤ ||h||Y . As a result ||hyy||β ≤
C||h||Y and we are done.

As for the cases of yh and y2h, it suffices to use (22) instead of (23) and very similar arguments.

4.2 Checking assumptions of Theorem 7

Equipped with the function spaces Y and Z, we thus consider

F (ε, h) := hxx + hyy + n0

(
2A2εθ(x)y −A2ε2θ2(x)−

∫
R
h(x, y′)dy′

)
+ h

(
1−A2(y − εθ(x))2 + λ0 −

∫
R
h(x, y′)dy′

)
. (39)

Clearly F (0, 0) = 0. We prove below that the assumptions of Theorem 7 hold true.

Checking assumptions (i) and (ii) of Theorem 7. We first check that F is well defined. Recalling that
n0(y) = ηΓ0(y) and since (Γi)i∈N is orthonormal in L2(R), it is clear that the conditions in (30) are
satisfied, so that n0 ∈ Z. Similarly and in view of (22), yn0 ∈ Z. Next, for fixed ε ∈ R and h ∈ Y , the
function b(x) := −A2ε2θ2(x)−

∫
R h(x, y′)dy′ is continuous and bounded thanks to (36), and therefore

bn0 ∈ Z from Lemma 13. In the same way, setting b̃(x) := 2A2εθ(x), we obtain b̃yn0 ∈ Z. Finally, the
other terms in F (ε, h) also belong to Z, again by virtue of Lemma 13.

We now compute DhF (0, 0) the Fréchet derivative of F along the second variable at point (0, 0).
We have F (0, h) = Lh+R(h), where

Lh := hxx + hyy + h
(
1−A2y2 + λ0

)
− n0

∫
R
h(x, y′)dy′, (40)

and R(h) = −h
∫
R h(x, y′)dy′. From Lemma 13 and (36), the remainder R(h) satisfies

||R(h)||Z ≤ ||h||Z
∥∥∥∥∫

R
h(·, y′)dy′

∥∥∥∥
L∞
≤ C||h||2Y .

On the other hand, L : Y → Z is a linear continuous operator, which is readily seen by using Lemma
13 and (36). Since F (0, 0) = 0, we then have DhF (0, 0) = L.

Using similar arguments, one shows that DhF is well-defined on a neighborhood of (0, 0), as well
as the continuity of F and DhF at (0, 0).

Now, the main part is to prove the bijectivity of DhF (0, 0) = L : Y → Z.

Checking assumption (iii) of Theorem 7. We proceed by analysis and synthesis. Let f ∈ Z be given,
and assume there exists h ∈ Y such that Lh = f . Thanks to (34) and (35), f(x, ·) and h(x, ·) are in
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L2(R) for any x ∈ R. Since the family of eigenfunctions (Γi)i∈N of Proposition 8 forms a Hilbert basis
of L2(R), we can write

h(x, y) =
+∞∑
i=0

hi(x)Γi(y), f(x, y) =
+∞∑
i=0

fi(x)Γi(y), (41)

where, for any i ∈ N,

hi(x) :=

∫
R
h(x, y)Γi(y)dy, fi(x) :=

∫
R
f(x, y)Γi(y)dy.

Notice that, for any x ∈ R, the equalities in (41) correspond, a priori, to a convergence of the series in
the Hilbert space L2(R) norm. However, since h ∈ Y and f ∈ Z, there holds

||hi||L∞ ≤
||h||Y

(1 + i)β+1
, (42)

and
||fi||L∞ ≤

||f ||Z
(1 + i)β

. (43)

Consequently, since β > 13
4 > 5

4 and (25) holds, the convergences in (41) are also valid pointwise in
R2. Similarly, thanks to (24), the equality∫

R
h(x, y)dy =

+∞∑
i=0

hi(x)

∫
R

Γi(y)dy

holds pointwise in R. Also, thanks to (34) and (35), we obtain that hi ∈ C2
b (R) and fi ∈ Cb(R), with

h′i(x) =

∫
R
hx(x, y)Γi(y)dy, h′′i (x) =

∫
R
hxx(x, y)Γi(y)dy.

Now, we project equality f = Lh on each Γi so that, for all x ∈ R,

fi(x) =

∫
R
hxx(x, y)Γi(y)dy +

∫
R
hyy(x, y)Γi(y)dy +

∫
R

(1−A2y2 + λ0)h(x, y)Γi(y)dy

−
(∫

R
h(x, y′)dy′

)∫
R
n0(y)Γi(y)dy

= h′′i (x) +

∫
R
h(x, y)

[
Γ′′i (y) + (1−A2y2 + λ0)Γi(y)

]
dy − ηδi0

∫
R
h(x, y′)dy′

= h′′i (x)− (λi − λ0)hi(x)− ηδi0
+∞∑
i=0

hi(x)

∫
R

Γi(y)dy,

where we have integrated by parts and used (8). Therefore, Lh = f is reduced to an infinite system of
linear ordinary differential equations for the hi’s, namely

h′′i − (λi − λ0)hi = fi(x), (i ≥ 1), (44)

and

h′′0 + λ0h0 = f0(x) + η

+∞∑
i=1

mihi(x), (45)

where we recall the notation (28) for the mass mi. Notice that, combining (42) with (24), the series
appearing in the right-hand side of (45) converges to a function in Cb(R).

We first deal with the case i ≥ 1, that is (44). Since λi − λ0 > 0 and fi ∈ Cb(R), there is a unique
solution hi to (44) which remains in C2

b (R), and it is explicitly given by

hi(x) = −ρi ∗ fi(x) where ρi(z) :=
1

2
√
λi − λ0

e−
√
λi−λ0|z|, (i ≥ 1). (46)
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The functions hi (i ≥ 1) now determined, we can deal with the i = 0 case. Since λ0 < 0, there is a
unique solution h0 to (45) which remains in C2

b (R), and it is explicitly given by

h0(x) = −ρ0 ∗

(
f0 + η

+∞∑
i=1

mihi

)
(x) where ρ0(z) :=

1

2
√
−λ0

e−
√
−λ0|z|. (47)

Conversely, we need to prove that, for hi = hi(x) provided by (46) and then (47), the function

h(x, y) :=
+∞∑
i=0

hi(x)Γi(y), (48)

does belong to Y and that Lh = f .
Let us first prove that h ∈ C2(R2). In the sequel, C denotes a positive constant that may change

from line to line, but that always depends only on A and ||f ||Z . From (43) and (20) we deduce that,
for all i ≥ 1,

||hi||L∞ ≤ ||ρi||L1 ||fi||L∞ ≤
1

λi − λ0
× ||f ||Z

(1 + i)β
≤ C

(1 + i)β+1
, (49)

||h′i||L∞ ≤ ||ρ′i||L1 ||fi||L∞ ≤
1√

λi − λ0
× ||f ||Z

(1 + i)β
≤ C

(1 + i)β+1/2
, (50)

and thus, from equation (44),

||h′′i ||L∞ ≤ ||fi||L∞ + (λi − λ0)||hi||L∞ ≤
C

(1 + i)β
. (51)

Therefore, with (25), the series in (48) is normally convergent, and the equality is valid pointwise.
Now, since β > 13

4 > 5
4 , combining (49)—(51) and (25)—(26), we obtain that h ∈ C2(R2), with the

pointwise expressions

Dp
xD

q
yh(x, y) =

+∞∑
i=0

dphi
dxp

(x)
dqΓi
dyq

(y), (p+ q ≤ 2). (52)

Also, recalling definition (33), we infer from (49)—(51) that

2∑
k=0

||Dk
xh||β+1−k/2 < +∞.

In view of (31), we now need to prove that (x, y) 7→ (1 + y2)2Dαh(x, y) is bounded for any multi-
index |α| ≤ 2. Using (49) and (26), we find that, for all (x, y) ∈ R2,

∣∣(1 + y2)2h(x, y)
∣∣ ≤ +∞∑

i=0

|hi(x)| ×
∣∣(1 + 2y2 + y4)Γi(y)

∣∣ ≤ C +∞∑
i=0

i9/4

(1 + i)β+1
< +∞,

since β > 13
4 > 9

4 . Analogously, combining (49)—(51) with (26), we can deal with Dαh for any other
multi-index |α| ≤ 2. For instance, notice the so-called “worst case”:

∣∣(1 + y2)2hxx(x, y)
∣∣ ≤ C +∞∑

i=0

i9/4

(1 + i)β
< +∞,

since β > 13/4.
Eventually, we proved that ||h||Y < +∞, therefore h ∈ Y and the proof of Lh = f is clear.
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4.3 Completion of the proof of Theorem 3

Proof of Theorem 3. From the above two subsections, we can apply Theorem 7 to the function F
around the point (0, 0). Hence there are ε0 > 0 and r1 > 0 such that, for any |ε| < ε0, the following
holds: there is a unique hε ∈ Y for which ||hε||Y ≤ r1 and F (ε, hε) = 0. Recalling nε(x, y) =
n0(y) + hε(x, y), this transfers into (9).

Let us now prove (10). Since F is of the class C1 (the case of the variable h was treated in subsection
4.2 and the case of the ε variable is clear) we deduce from Theorem 7, F (ε, hε) = 0 and the chain rule
that

DεF (ε, hε) +DhF (ε, hε)

(
dhε

dε

)
= 0,

which we evaluate at ε = 0 to get

DεF (0, 0) + L

(
dhε

dε

∣∣∣∣
ε=0

)
= 0.

From the expression of F = F (ε, h) we easily compute DεF (0, 0) = 2A2θ(x)yn0(y), so that, since
n0(y) = ηΓ0(y),

dhε

dε

∣∣∣∣
ε=0

= −2A2L−1
(
θ(x)yn0(y)

)
= −2A2ηL−1 (θ(x)yΓ0(y)) .

From (22) we know yΓ0(y) = 1√
2A

Γ1(y) so that

dhε

dε

∣∣∣∣
ε=0

= −
√

2A3/2ηL−1 (θ(x)Γ1(y)) .

Now, we compute L−1 (θ(x)Γ1(y)) via (46) and (47) and reach (recall that m1 =
∫
R Γ1(y)dy = 0)

dhε

dε

∣∣∣∣
ε=0

= −
√

2A3/2η [ηm1 (ρ0 ∗ (ρ1 ∗ θ)) (x)Γ0(y)− (ρ1 ∗ θ)(x)Γ1(y)]

=
√

2A3/2
[
y
√

2A(ρ1 ∗ θ)(x)
]
n0(y)

= 2A2(ρ1 ∗ θ)(x) yn0(y),

which can be recast (10).
It remains to consider the case when we assume further that θ ∈ Cmb (R) for some m ≥ 1 which, in

particular, improves the regularity of the solution nε = nε(x, y). In this case one can actually redo the
proofs above by replacing the spaces Y,Z in (29) and (30) with Ym, Zm given by

Ym :=

h ∈ C
m+2(R2)

∣∣∣∣∣∣∣∣∣
∃C > 0, ∀|α| ≤ m+ 2, |Dαh(x, y)| ≤ C

(1+y2)2
on R2,

∃K > 0,∀k ≤ m+ 2, ∀i ∈ N,
sup
x∈R

∣∣∫
RD

k
xh(x, y)Γi(y)dy

∣∣ ≤ K
(1+i)β+(m+2−k)/2

 , (53)

and

Zm :=

f ∈ C
m(R2)

∣∣∣∣∣∣∣∣∣
∃C > 0, ∀|α| ≤ m, |Dαf(x, y)| ≤ C

1+y2
on R2,

∃K > 0, ∀k ≤ m, ∀i ∈ N,
sup
x∈R

∣∣∫
RD

k
xf(x, y)Γi(y)dy

∣∣ ≤ K
(1+i)β+(m−k)/2

 ,

equipped with their respective norms

||h||Ym :=
∑

|α|≤m+2

sup
(x,y)∈R2

∣∣(1 + y2)2Dαh(x, y)
∣∣+

m+2∑
k=0

||Dk
xh||β+(m+2−k)/2,

and

||f ||Zm :=
∑
|α|≤m

sup
x,y∈R

∣∣(1 + y2)Dαf(x, y)
∣∣+

m∑
k=0

||Dk
xf ||β+(m−k)/2,

where we recall definition (33). Details are omitted.
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4.4 Additional properties in the periodic and localized cases

In this subsection, we start the proof of Theorem 4 and Theorem 5, estimates (13) and (15) being
postponed to the next subsection.

Proof of the periodicity of the steady states in Theorem 4. In addition to the conditions of Theorem 3,
let us assume θ ∈ CLper(R) for some L > 0. Let us recall that, from subsection 4.3, for any |ε| < ε0,
there is a unique hε ∈ Y for which ||hε||Y ≤ r1 and F (ε, hε) = 0. Defining

h̃ε(x, y) := hε(x+ L, y),

one readily checks that F (ε, h̃ε) = 0 and ||h̃ε||Y ≤ r1. Therefore hε ≡ h̃ε, that is hε is L-periodic in x,
and so is nε(x, y) = n0(y) + hε(x, y).

Proof of nε − n0 ∈ Ỹ , where Ỹ is defined by (56), in Theorem 5. In addition to the conditions of The-
orem 3, let us assume θ ∈ C0(R). Our proof relies on the following technical lemma, whose proof is
postponed.

Lemma 14 (Function G). Let θ ∈ C0(R). Then there is a piecewise constant function G > 0 such
that 

G(x) ≥ max
(
|θ(x)|, θ2(x)

)
, ∀x ∈ R,

G is even on R, nonincreasing on [0,+∞),
limx→+∞G(x) = 0,

(54)

together with the following property: there is σ > 0 such that, for all i ∈ N,

(ρi ∗G)(x) ≤ σ

1 + i
G(x), ∀x ∈ R, (55)

where the ρi’s are given by (46) and (47).

Then, equipped with such a function G, we can redo the proof of subsections 4.1 to 4.3 by replacing
the spaces Y,Z in (29) and (30) with

Ỹ :=

h ∈ C2(R2)

∣∣∣∣∣∣∣
∃C > 0, ∀|α| ≤ 2, |Dαh(x, y)| ≤ CG(x)

(1+y2)2
on R2,

∃K > 0, ∀k ≤ 2, ∀i ∈ N,
∣∣∫

RD
k
xh(x, y)Γi(y)dy

∣∣ ≤ KG(x)

(1+i)β+1−k/2 on R

 ,

(56)
and

Z̃ :=

f ∈ C(R2)

∣∣∣∣∣∣∣
∃C > 0, |f(x, y)| ≤ CG(x)

1+y2
on R2,

∃K > 0,∀i ∈ N,
∣∣∫

R f(x, y)Γi(y)dy
∣∣ ≤ KG(x)

(1+i)β
on R

 ,

equipped with the norms

||h||Ỹ :=
∑
|α|≤2

sup
(x,y)∈R2

∣∣(1 + y2)2G(x)−1Dαh(x, y)
∣∣+

2∑
k=0

∥∥∥∥ 1

G
Dk
xh

∥∥∥∥
β+1−k/2

, (57)

and
||f ||Z̃ := sup

(x,y)∈R2

∣∣(1 + y2)G(x)−1f(x, y)
∣∣+

∥∥∥∥ 1

G
f

∥∥∥∥
β

,

where we recall definition (33), and β > 13
4 .

Let us make some comments on how the proof is modified. One can readily check that Ỹ , Z̃ are
Banach, as in subsection 4.1. Also, since G ≥ max(|θ|, θ2), the map F : Ỹ → Z̃ in (39) is well-defined,
and its continuity, differentiability are still valid, with DhF (0, 0) = L given by (40). To conclude, we
need to prove that, for a fixed f ∈ Z̃, there exists a unique h ∈ Ỹ such that Lh = f . Following the
same procedure as in subsection 4.2, we obtain that the hi’s are necessarily given by (46) and (47). We
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claim (see below) that h defined by (48) does belong to Ỹ . Then we conclude the proof by applying
Theorem 7 in the same way as in subsection 4.3.

Let us show that h defined by (48) belongs to Ỹ . Notice that since f ∈ Z̃ and (55) holds, we
obtain, for all i ≥ 1,

|hi(x)| = |ρi ∗ fi(x)| ≤
||f ||Z̃

(1 + i)β
(ρi ∗G)(x) ≤

σ||f ||Z̃
(1 + i)β+1

G(x), (58)

and similarly, since λi − λ0 = 2iA for all i ≥ 1, we have

h′i(x) =
√
λi − λ0(ρi ∗ fi)(x)⇒ |h′i(x)| ≤

√
2Aσ||f ||Z̃

(1 + i)β+1/2
G(x),

h′′i (x) = (λi − λ0)(ρi ∗ fi)(x)⇒ |h′′i (x)| ≤
2Aσ||f ||Z̃
(1 + i)β

G(x).

The bounds on h0, h
′
0, h
′′
0, can then be deduced. Indeed, from (58) we have∣∣∣∣∣f0(x) + η

+∞∑
i=1

mihi(x)

∣∣∣∣∣ ≤
(

1 + ησ
+∞∑
i=1

|mi|
(1 + i)β+1

)
||f ||Z̃G(x),

where the series converges from (24) and β > 13
4 > 1

4 . Combining this with (47) yields that (58) also
holds for i = 0. For h′0, h′′0 we proceed as above and thus deduce that

∑2
k=0 ||G−1Dk

xh||β+1−k/2 < +∞.
It remains to prove the upper bound on |Dαh(x, y)| for |α| ≤ 2. As in subsection 4.2, we have that
h ∈ C2(R2) and (52) holds. Additionally, combining Lemma 9 and Lemma 10, for any p, q ∈ N such
that p+ q ≤ 2, there holds

∣∣(1 + y2)2Dp
xD

q
yh(x, y)

∣∣ ≤ +∞∑
i=0

|h(p)
i (x)| × |

(
1 + y2

)2
Γ

(q)
i (y)|

≤ CG(x)

+∞∑
i=0

1

(1 + i)β+1−p/2 × i
2i1/4+q/2,

for some constant C > 0. The series converges since β > 13/4. Hence h ∈ Ỹ .

It remains to prove Lemma 14.

Proof of Lemma 14. Set

0 < αi :=

{√
λi − λ0 =

√
2iA i ≥ 1,

√
−λ0 =

√
1−A i = 0,

and α̃ := 1
2 min(α0, α1) > 0. Notice that α̃ ≤ 1

2αi for all i ∈ N. Define

G̃(x) := sup
|t|≥|x|

max
(
|θ(t)|, θ2(t), e−

α̃
2
|t|
)
,

which clearly satisfies (54). Then the function

G(x) :=


G̃(0) 0 ≤ |x| < 1,

max
(
G̃(0)

2 , G̃(1)
)

1 ≤ |x| < 2,

max
(
G̃(0)
2k+2 ,

G̃(1)
2k+1 ,

G̃(2)
2k

, · · · , G̃(2k)
2 , G̃(2k+1)

)
2k+1 ≤ |x| < 2k+2, k ∈ N,

is piecewise constant, satisfies (54) as well as

G(x)eα̃x → +∞, as x→ +∞, (59)

and
G(x/2) ≤ 2G(x), ∀x ≥ 0. (60)
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It remains to prove (55). Since both G and ρi ∗G are even, it suffices to consider x ≥ 0. We write

I(x) :=
α2
i

G(x)
(ρi ∗G)(x)

=
αi

2G(x)

(∫ x/2

−∞
e−αi(x−z)G(z)dz +

∫ x

x/2
e−αi(x−z)G(z)dz +

∫ +∞

x
eαi(x−z)G(z)dz

)
=: I−(x) + I0(x) + I+(x).

Since G is nonincreasing on [0,+∞) and satisfies (60), there holds

I−(x) ≤ αi
2G(x)eαix

||G||∞
∫ x/2

−∞
eαizdz ≤ ||G||∞

2G(x)eα̃x
,

I+(x) ≤ αi
2
eαix

∫ +∞

x
e−αizdz =

1

2
,

I0(x) =
αi

2G(x)eαix

∫ x

x/2
eαizG(z)dz ≤ αi

eαix

∫ x

x/2
eαizdz ≤ 1.

Since G satisfies (59), I(x) is uniformly bounded on [0,+∞) independently of i ∈ N. Consequently,
since α2

i = 2iA for i ≥ 1, we see that (55) holds for some σ > 0.

4.5 Positivity and control on the y-tails in the periodic and localized cases

In this subsection, we prove estimates (13) and (15), thus completing the proof of Theorem 4 and
Theorem 5.

Proof of (13) and (15). We assume either θ ∈ CLper(R) for some L > 0 (periodic case), or θ ∈ C0(R)
(localized case). From subsection 4.4, in the periodic case, nε ∈ Y is L-periodic in x, while in the
localized case, we have nε − n0 ∈ Ỹ where Ỹ is given by (56). Notice that, in both cases, nε − n0 → 0
as ε→ 0 (in Y or in Ỹ respectively). As a result, by reducing ε0 > 0 if necessary, there holds that, for
any |ε| < ε0,

|nε(x, y)| ≤ ||nε||Y
(1 + y2)2

≤ 2||n0||Y
(1 + y2)2

, in the periodic case, (61)

∣∣nε(x, y)− n0(y)
∣∣ ≤ ||nε − n0||ỸG(x)

(1 + y2)2
≤ G(x)

(1 + y2)2
, in the localized case. (62)

Assume by contradiction that there is a sequence εp → 0 with p ≥ 1 such that nεp is not nonnegative
on R2.

Step 1: nεp admits a minimum. Set mp := inf(x,y)∈R2 nεp(x, y) < 0, and consider a sequence
(xkp, y

k
p)k∈N such that nεp(xkp, ykp) → mp as k → +∞. From (61)—(62), nεp(x, y) tends to zero as

|y| → +∞ uniformly in x ∈ R. Thus there exists Yp > 0 such that, for all k, |ykp | ≤ Yp. Notice
that, despite (61)—(62), Yp depends a priori on p through the value of mp. On the other hand, in the
periodic case, we may consider that xkp ∈ [0, L] while, in the localized case, from (62) we have in the
same way |xkp| ≤ Xp. Therefore, assuming Xp ≥ L, we have in both cases

(xkp, y
k
p) ∈ [−Xp, Xp]× [−Yp, Yp], ∀k ∈ N.

Hence, up to a subsequence, (xkp, y
k
p) converges to a point (xp, yp) ∈ [−Xp, Xp]× [−Yp, Yp], where nεp

is thus reaching its minimum.
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Step 2: bound on yp that is uniform w.r.t. p. From the steady state equation (7) for nεp evaluated
at the minimum point (xp, yp), we obtain (recall mp < 0)

0 =
1

mp

(
∆x,yn

εp(xp, yp) + nεp(xp, yp)

(
1−A2(yp − εpθ(xp))2 −

∫
R
nεp(xp, y

′)dy′
))

≤ 1−A2(yp − εpθ(xp))2 −
∫
R
nεp(xp, y

′)dy′

≤ 1−A2y2
p + 2A2ε0|yp|.||θ||∞ +A2ε2

0||θ||2∞ +

{
π||n0||Y in the periodic case,
−λ0 + π

2 ||G||∞ in the localized case,
(63)

where we used (61)—(62) in the last inequality. The above enforces the existence of some M > 0
(independent of p) such that |yp| ≤M .

Step 3: bound on xp that is uniform w.r.t. p. In the periodic case, this is obvious since we can
assume xkp ∈ [0, L]. In the localised case, thanks to (62), we have for all x ∈ R and |y| ≤M ,

nεp(x, y) ≥ n0(y)− G(x)

(1 + y2)2
||nεp − n0||Ỹ ≥ n

0(M)−G(x).

This implies the existence of X > 0 independent of p such that nεp(x, y) ≥ 1
2n

0(M) > 0 for any
|x| ≥ X and |y| ≤M . Consequently, for k large enough, we have |xkp| ≤ X. Assuming X > L, we thus
have in both cases |xp| ≤ X.

Step 4: deriving a contradiction. From the above, we can assert that (xp, yp) ∈ [−X,X]× [−M,M ]
for p large enough. However, let us underline that n0 > 0 on R2 and, in both the periodic and the
localized case,

||nε − n0||L∞(R2) → 0, as ε→ 0.

As a consequence, for p large enough, there holds nεp > 0 on [−X,X] × [−M,M ], which contradicts
mp = nεp(xp, yp) < 0.

Therefore, by reducing ε0 > 0 if necessary, we have that, for all |ε| ≤ ε0, the steady state nε is
nonnegative. Now, as already seen in (63), there is C > 0 such that, for all x ∈ R,

∫
R n

ε(x, y)dy ≤ C.
We thus deduce from (7) that −nεxx−nεyy −nε

[
1−A2(y − εθ(x))2 − C

]
≥ 0. The maximum principle

then implies
∀|ε| ≤ ε0, ∀(x, y) ∈ R2, nε(x, y) > 0.

Last, we prove the exponential control appearing in (13) and (15). Let a > 0 be given. Set

Ω :=
{

(x, y) ∈ R2 : 1−A2(y − εθ(x))2 > −a2
}
.

From (61) and (62), there is N > 0 such that 0 < nε ≤ N . We now define

n(x, y) := Neay0e−a|y|, y0 := ε0||θ||∞ +
1

A

√
1 + a2 > 0,

so that n ≥ nε in Ω. It remains to prove that n ≥ nε in Ωc. Notice that, since nε ≥ 0 solves (7), there
holds

Enε := −nεxx − nεyy − nε
[
1−A2(y − εθ(x))2

]
≤ 0.

Meanwhile, in Ωc,
En = −a2n− n

[
1−A2(y − εθ(x))2

]
≥ 0.

Due to the maximum principle, we deduce that nε ≤ n on Ωc, and thus on R2. This concludes the
proof of (13) and (15).
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5 Construction of pulsating fronts

In this section, we prove Theorem 6 on pulsating fronts.

Let ε0 > 0 be as in Theorem 4 and, for |ε| < ε0, let nε = nε(x, y) be the periodic positive steady
state provided by Theorem 4. Let us fix a speed c0 ≥ c∗0 = 2

√
−λ0 and recall that U = U(z) denotes

the Fisher-KPP front given by (16) and traveling at speed c0. We look after a pulsating front solution
to (5) in the perturbative form

uε(z, x, y) = U(z)nε(x, y) + vε(z, x, y), cε = c0 + sε,

where we understand z = x− cεt, meaning that the front spreads at the perturbed speed cε = c0 + sε.
Plugging this into (5), using the steady state equation (7) for nε(x, y) and the front equation (16) for
U(z), we are left to find (sε, vε) satisfying F(ε, sε, vε) = 0 where

F(ε, s, v) := vzz + 2vxz + vxx + vyy + (c0 + s)vz + sU ′(z)nε(x, y) + 2U ′(z)nεx(x, y)

+ v

(
1−A2(y − εθ(x))2 − U(z)

∫
R
nε(x, y′)dy′ −

∫
R
v(z, x, y′)dy′

)
− U(z)nε(x, y)

∫
R
v(z, x, y′)dy′ + U(z)(1− U(z))nε(x, y)

(
λ0 +

∫
R
nε(x, y′)dy′

)
. (64)

However, since the elliptic operator appearing in the right-hand side above is degenerate in the (z, x)
variables, we need to consider the regularization

Fµ(ε, s, v) := F(ε, s, v) + µvxx, 0 < µ� 1. (65)

To prove Theorem 6, the very crude strategy is as follows. We first apply the Implicit Function
Theorem, namely Theorem 7, to Fµ : R × R × Yµ → Z where the function spaces Yµ and Z are
appropriately chosen. This will provide a couple (sε,µ, vε,µ) ∈ R × Yµ for any µ > 0 small enough.
Then, we shall obtain sε, vε by passing to the limit µ → 0. See Remark in subsection 5.1 for more
details on the key ideas of the proof.

By assumption, see Theorem 6, there are γ > 3, k ≥ 0 and 0 ≤ δ < 1 with k + δ > γ + 1
2 such

that θ belongs to Ck,δ(R) ∩CLper(R), and so does θ2. In particular, the Fourier coefficients of θ and θ2

decay at least at speed |m|−(k+δ) as |m| → ∞, that is

∃Kθ > 0, ∀m ∈ Z, max
(
|θm| ,

∣∣(θ2)m
∣∣) ≤ Kθ

(1 + |m|)k+δ
, (66)

where we denote

θm :=
1

L

∫ L

0
θ(x)e−

2iπmx
L dx, (θ2)m :=

1

L

∫ L

0
θ2(x)e−

2iπmx
L dx.

5.1 Function spaces

We first present a few notations that will be used below. For any function f = f(z, x, y) ∈ Cb(R3)
such that f(z, x, ·) ∈ L2(R) and f(z, x+ L, y) = f(z, x, y) for all z, x, y, we denote

fj(z, x) :=

∫
R
f(z, x, y)Γj(y)dy, (67)

that is fj denotes the j-th coordinate of f along the basis of eigenfunctions (Γj = Γj(y))j∈N. We also
define

fnj (z) :=
1

L

∫ L

0
fj(z, x)e−

2iπn
L

xdx =
1

L

∫ L

0
fj(z, x)e−n(x)dx, (68)

en(x) := e
2iπn
L

x = eiσnx, σ :=
2π

L
, n ∈ Z, (69)
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that is fnj (z) denotes the n-th Fourier coefficient of x 7→ fj(z, x).

Now, for a κ ∈
(

0,−1
2c0 + 1

2

√
c2

0 − 4λ0

)
to be precised later, we define

Yµ :=


v ∈ C2(R3)

∣∣∣∣∣∣∣∣∣∣∣∣∣

v(z, x+ L, y) = v(z, x, y) on R3,

∃C > 0, ∀|α| ≤ 2, |Dαv(z, x, y)| ≤ Ce−κ|z|

(1+y2)2
on R3,

∃K > 0, ∀n ∈ Z, ∀j ∈ N, ∀k ≤ 2, there holds

|(vnj )(k)(z)| ≤ Ke−κ|z|

(1+j)β(1+|n|)γ ×
1+|n|k+jk/2

1+µn2+j+|n| on R


, (70)

Z :=


f ∈ C(R3)

∣∣∣∣∣∣∣∣∣∣∣∣

f(z, x+ L, y) = f(z, x, y) on R3,

∃C > 0, |f(z, x, y)| ≤ Ce−κ|z|

1+y2
on R3,

∃K > 0, ∀n ∈ Z, ∀j ∈ N, there holds

|fnj (z)| ≤ Ke−κ|z|

(1+j)β(1+|n|)γ on R


. (71)

Obviously those spaces also depend on parameters κ, β and γ which will be fixed later, and we therefore
only indicate the dependence on µ. We equip the space Yµ with the norm

||v||Yµ :=
∑
|α|≤2

sup
(z,x,y)∈R3

[∣∣(1 + y2)2Dαv(z, x, y)
∣∣ eκ|z|]+ ||v||β,γ,µ, (72)

where

||v||β,γ,µ :=

2∑
k=0

sup
n∈Z,j∈N

[
(1 + j)β(1 + |n|)γ 1 + µn2 + j + |n|

1 + |n|k + jk/2
sup
z∈R

∣∣∣(vnj )(k)(z)eκ|z|
∣∣∣] .

We equip the space Z with the norm

||f ||Z = sup
(z,x,y)∈R3

[∣∣(1 + y2)f(z, x, y)
∣∣ eκ|z|]+ ||f ||β,γ , (73)

where
||f ||β,γ := sup

n∈Z,j∈N

[
(1 + j)β(1 + |n|)γ sup

z∈R

∣∣∣fnj (z)eκ|z|
∣∣∣] .

Remark 15 (Choice of the function spaces and overview of the proof of Theorem 6). Let us comment
on the spaces Yµ,Z and the two controls appearing in their definition. As in the stationary case, i.e.
Section 4, the crux of the proof is to show that Lµ := D(s,v)Fµ(0, 0, 0), given by (95), is bijective from
R×Sµ to Z, where Sµ ⊂ Yµ is to be determined, that is for every fixed f ∈ Z, there is a unique sµ ∈ R
and a unique vµ ∈ Sµ such that Lµ(sµ, vµ) = f . Using the controls on the y-tails provided by the first
constraint in the definition of Yµ and Z, and then the L-periodicity in x, we decompose successively
vµ and f along the eigenfunction bases (Γj)j∈N and (en)n∈Z respectively, leading to (100), where we
denoted v = vµ to ease readability. Next, the control on fnj , i.e. the second constraint in the definition
of Z, allows to prove the bound (128).

However, the operators Ln,j,µ defined by (100), (102) and (103) might not be injective. Thus, in
order to ensure the uniqueness, we require that (vµ)nj belongs to a subspace Sn,j,µ of the departure space
of Ln,j,µ. These additional conditions lead to vµ ∈ Sµ, after reconstruction of vµ according to (138).
To show that vµ ∈ C2

b (R3) and vµ satisfies the first control in Yµ, we require β > 17
4 and γ > 2. This

allows to apply Theorem 7 and deduce the existence of sε,µ, vε,µ such that Fµ(ε, sε,µ, vε,µ) = 0 for any
|ε| ≤ ε0.

The next step is to let µ → 0 in Fµ(ε, sε,µ, vε,µ) = 0. However, to do so, we first require that ε0

may be fixed independently on µ. This is actually true from the crucial observation that, despite Fµ is
unbounded with respect to µ, both (Lµ)−1 and Fµ − Lµ, see (141), are bounded (see subsection 5.4).
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Last, to ensure that a subsequence of (vε,µ)µ converges as µ → 0, we need to redo the above proof
by replacing Yµ and Z with (145) and (146) respectively. This allows to obtain C3

b regularity for vε,µ,
at the cost of the assumptions β > 19

4 and γ > 3. Then, the L-periodicity on x and the controls on the
y- and z-tails in the definition of (145) allow in some sense to compactify the domain of definition of
vε,µ, so that we can adapt the proof of the Arzelà-Ascoli theorem and conclude, see subsection 5.5.

In what follows, we will repeatedly use the following straightforward estimates:

∀v ∈ Yµ, ∀|α| ≤ 2, ∀(z, x, y) ∈ R3, |Dαv(z, x, y)| ≤ ||v||Yµ
e−κ|z|

(1 + y2)2
, (74)

∀v ∈ Yµ, ∀k ≤ 2, ∀(n, j) ∈ Z× N, ∀z ∈ R, |(vnj )(k)(z)| ≤ ||v||Yµ
e−κ|z|

(
1 + |n|k + jk/2

)
(1 + j)β(1 + |n|)γ (1 + µn2 + j + |n|)

,

(75)

∀f ∈ Z, ∀(z, x, y) ∈ R3, |f(z, x, y)| ≤ ||f ||Z
e−κ|z|

1 + y2
, (76)

∀f ∈ Z, ∀(n, j) ∈ Z× N, ∀z ∈ R, |fnj (z)| ≤ ||f ||Z
e−κ|z|

(1 + j)β(1 + |n|)γ
, (77)

∀v ∈ Yµ, ∀(z, x) ∈ R2,

∣∣∣∣∫
R
v(z, x, y)dy

∣∣∣∣ ≤ π

2
||v||Yµe−κ|z|. (78)

Also, we claim that there exists KA > 0, that depends only on A, such that

∀v ∈ Yµ, ∀z ∈ R, ∀n ∈ Z,
∣∣∣∣ 1L
∫ L

0

∫
R
v(z, x, y)dye−n(x)dx

∣∣∣∣ ≤ KA||v||Yµ
e−κ|z|

(1 + |n|)γ+1
. (79)

Indeed, from (75), we have (as usual the constant C > 0 is independent of z, x, y, j and n but may
change from line to line) ∣∣vnj (z)

∣∣ ≤ C||v||Yµ e−κ|z|

(1 + j)β(1 + |n|)γ+1
.

Let us recall that β > 19
4 and γ > 3. Thus we obtain

|vj(z, x)| ≤
∞∑

n=−∞
|vnj (z)| ≤ C||v||Yµ

e−κ|z|

(1 + j)β
.

Since (24) holds, we deduce

∫
R
v(z, x, y)dy =

∫
R

∑
j∈N

vj(z, x)Γj(y)

 dy =
∑
j∈N

mjvj(z, x),

where we recall the notation mj :=
∫
R Γj(y)dy. This in turn leads to

∣∣∣∣ 1L
∫ L

0

(∫
R
v(z, x, y)dy

)
e−n(x)dx

∣∣∣∣ =

∣∣∣∣∣∣
∑
j∈N

mjv
n
j (z)

∣∣∣∣∣∣ ≤ C||v||Yµ e−κ|z|

(1 + |n|)γ+1

∑
j∈N

|mj |
(1 + j)β

,

which proves the claim (79) using again (24).

Lemma 16 (Yµ and Z are Banach). For all 0 < µ < 1, the spaces Yµ given by (70), and Z given by
(71), are Banach spaces when equipped with their respective norm ||.||Yµ given by (72), and ||.||Z given
by (73).

Proof. Let us fix 0 < µ < 1. For the sake of completeness, we give a short proof that Yµ is Banach,
the proof for Z being similar. Let (vm)m∈N be a Cauchy sequence in Yµ. Since the embedding
Yµ ↪→ C2

b (R3) is continuous and C2
b (R3) is Banach, there is v ∈ C2

b (R3) such that ||vm− v||C2
b (R3) → 0.
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Let us prove that v ∈ Yµ. The L-periodicity in x of v is obvious. Following the same arguments as
in the proof of Lemma 12, there exists C > 0 such that

|Dαv(z, x, y)| ≤ Ce−κ|z|

(1 + y2)2
, (80)

for all |α| ≤ 2 and (z, x, y) ∈ R3. Next, similarly to the proof of Lemma 12, the sequence Km :=∑2
k=0 ||vm||γ,β,µ is bounded for all m ∈ N by some K > 0. Since (80) holds, we deduce by the

dominated convergence theorem that for any k ≤ 2,∣∣∣(vnj )(k)(z)
∣∣∣ = lim

m→∞

∣∣∣∣ 1L
∫ L

0

(∫
R
Dk
zvm(z, x, y)Γj(y)dy

)
e−n(x)dx

∣∣∣∣
≤ Ke−κ|z|

(1 + j)β(1 + |n|)γ
× 1 + |n|k + jk/2

1 + µn2 + j + |n|
.

Therefore v ∈ Yµ. From there, classical arguments (that we omit) yield that ||vm − v||Yµ → 0.

We now state some preliminary results. For better readability, we denote yv the function (z, x, y) 7→
yv(z, x, y), and similarly for y2v.

Lemma 17 (Controlling in Z the v terms of Fµ(ε, s, v)). There exists C > 0 such that, for any
µ ∈ (0, 1) and v = v(z, x, y) ∈ Yµ,

max
(
||v||Z , ||Dzv||Z , ||yv||Z , ||y2v||Z

)
≤ C||v||Yµ , (81)

max
|α|≤2

||Dαv||Z ≤ µ−1C||v||Yµ . (82)

Also, set ρ ≥ 0 and assume b = b(z, x) ∈ Cb(R2) satisfiesb(z, x+ L) = b(z, x) ∀z, x ∈ R,

|bm(z)| :=
∣∣∣ 1
L

∫ L
0 b(z, x)e−m(x)dx

∣∣∣ ≤ Kb
(1+|m|)γ+ρ ∀m ∈ Z, ∀z ∈ R,

(83)

for some Kb > 0. Then there are Cρ, C ′ρ > 0 such that, for any µ ∈ (0, 1) and v = v(z, x, y) ∈ Yµ,

||bv||Z ≤

(µ−1CρKb + ||b||L∞(R2))||v||Yµ if ρ = 0,

(CρKb + ||b||L∞(R2))||v||Yµ if ρ > 0,
(84)

and
||byv||Z ≤ (C ′ρKb + ||b||L∞(R2))||v||Yµ if ρ > 1/2. (85)

Proof. Fix µ ∈ (0, 1). By definition of Yµ, for any function w ∈ {Dαv, yv, y2v, bv, byv}, it is clear that
w is L-periodic in x and satisfies, thanks to (74),

|w(z, x, y)| ≤
C||v||Yµe−κ|z|

1 + y2
, ∀(z, x, y) ∈ R3,

with C = ||b||L∞(R2) if w ∈ {bv, byv}, and C = 1 otherwise. Thus in order to prove (81) and (82), it is
enough to control ||w||β,γ for each w ∈ {Dαv, yv, y2v, bv, byv}.

If w = yv, by virtue of (22), we have

(yv)nj (z) =
1

L

∫ L

0

(∫
R
v(z, x, y)yΓj(y)dy

)
e−n(x)dx =

{
p+
j v

n
j+1(z) + p−j v

n
j−1(z) j ≥ 1,

p+
0 v

n
1 (z) j = 0.

From (75), we thus obtain ||yv||β,γ ≤ C||v||Yµ for some C > 0. One can readily check that the same is
true for w = y2v.
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Now, set |α| ≤ 2 and w = Dαv. If w = v or w = Dzv, then from (75), we deduce ||w||β,γ ≤
||v||β,γ,µ ≤ ||v||Yµ . If w = D2

zv, then (75) yields ||D2
zv||β,γ ≤ µ−1||v||Yµ since 0 < µ < 1. Now, consider

w = Dk
xv with k ∈ {1, 2}. Then by integration by parts there holds

(Dk
xv)nj (z) =

1

L

∫ L

0
Dk
x

(∫
R
v(z, x, y)Γj(y)dy

)
e−n(x)dx = (inσ)k vnj (z),

which, thanks to (75) implies ||Dxv||β,γ ≤ σ||v||Yµ and ||D2
xv||β,γ ≤ µ−1σ||v||Yµ . As for w = Dk

yv

with k ≤ 2, the proof is similar to w = ykv by using (23) instead of (22). Therefore (82) holds for
Dα ∈ {Dk

z , D
k
x, D

k
y} with 0 ≤ k ≤ 2. The proof for the cross derivatives Dα ∈ {Dxy, Dxz, Dyz} results

from a combination of the above arguments. Therefore we proved (81)—(82).
Next, let us consider w = bv. Since (83) holds with γ + ρ ≥ γ > 3 > 1, the Fourier series of b(z, ·)

converges uniformly on R and we have pointwise

b(z, x) =

∞∑
m=−∞

bm(z)em(x).

This leads to

(bv)nj (z) =
1

L

∫ L

0
b(z, x)

(∫
R
v(z, x, y)Γj(y)dy

)
e−n(x)dx

=
1

L

∫ L

0

( ∞∑
m=−∞

bm(z)em(x)

)
vj(z, x)e−n(x)dx

=

∞∑
m=−∞

bm(z)vn−mj (z) =

∞∑
m=−∞

bn−m(z)vmj (z).

Let us first assume that ρ = 0. The controls (75) and (83) then yield

∣∣(bv)nj (z)
∣∣ ≤ ∞∑

m=−∞
|bn−m(z)| ×

∣∣vmj (z)
∣∣

≤ Kb||v||Yµ
∞∑

m=−∞

1

(1 + |n−m|)γ
× e−κ|z|

(1 + j)β(1 + |m|)γ
× 1

1 + µm2 + j + |m|
.

From there, one can readily check, by studying all possible cases on the signs of n, m and n−m, that

1

(1 + |n−m|)(1 + |m|)
≤ 1

1 + |n|
, ∀m,n ∈ Z.

Therefore ∣∣(bv)nj (z)
∣∣ ≤ Kb||v||Yµe−κ|z|

(1 + j)β(1 + |n|)γ
∞∑

m=−∞

1

1 + µm2 + j + |m|

≤
µ−1Kb||v||Yµe−κ|z|

(1 + j)β(1 + |n|)γ
∞∑

m=−∞

1

1 +m2
,

which gives (84) for ρ = 0. Meanwhile, if ρ > 0, similar calculations yield

∣∣(bv)nj (z)
∣∣ ≤ Kb||v||Yµe−κ|z|

(1 + j)β(1 + |n|)γ
∞∑

m=−∞

1

(1 + |n−m|)ρ
× 1

1 + µm2 + j + |m|

≤
Kb||v||Yµe−κ|z|

(1 + j)β(1 + |n|)γ
∞∑

m=−∞

1

(1 + |n−m|)ρ(1 + |m|)
.

Since ρ > 0, Hölder inequality shows that the sum of the infinite series above is bounded by some
Cρ > 0 which is independent of n ∈ Z. This gives (84) for ρ > 0.
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Finally, let us prove (85). With (22), we obtain that, for some CA,β > 0,

∣∣(byv)nj (z)
∣∣ ≤ Kb||v||Yµe−κ|z|

(1 + j)β(1 + |n|)γ
∞∑

m=−∞

1

(1 + |n−m|)ρ
×

CA,β
√
j

1 + j + |m|

≤
Kb||v||Yµe−κ|z|

(1 + j)β(1 + |n|)γ
∞∑

m=−∞

1

(1 + |n−m|)ρ
×

CA,β√
2(1 + |m|)

1
2

,

as easily seen by studying the maximum of j ∈ [0,+∞) 7→
√
j

1+j+|m| . Since ρ > 1
2 , Hölder inequality

shows that the sum of the infinite series above is bounded by some C ′ρ > 0 which is independent of
n ∈ Z. This gives (85).

To conclude this subsection, we prove that, by taking |ε| possibly smaller, we obtain some estimates
on the steady state nε = nε(x, y) in the Yµ,Z norms. For better readability, we denote e−κ|z|h the
function (z, x, y) 7→ e−κ|z|h(x, y) and similarly for e−κ|z|hx.

Lemma 18 (The steady state nε when θ ∈ CLper(R) further satisfies (66)). Fix β > 17
4 and γ > 2.

Let the conditions of Theorem 4 hold. Assume further that θ ∈ CLper(R) satisfies (66). Then, there is
ε∗0 > 0 such that, for any |ε| ≤ ε∗0,

there is a unique nε ∈ Y ∗ such that nε solves (7),

where the function space Y ∗ is given by (91). Additionally, we have ||nε−n0||Y ∗ → 0, as ε→ 0, where
|| · ||Y ∗ is the norm given by (92). Finally, there are Kσ > 0 (depending only on σ = 2π

L ), Kκ > 0
(depending only on κ) and KA > 0 (depending only on A) such that, for any h ∈ Y ∗,

||e−κ|z|h||Z ≤ ||h||Y ∗ , (86)

||e−κ|z|hx||Z ≤ Kσ||h||Y ∗ , (87)

||e−κ|z|h||Yµ ≤ Kκ||h||Y ∗ , ∀0 < µ < 1, (88)∣∣∣∣∫
R
h(x, y)dy

∣∣∣∣ ≤ π

2
||h||Y ∗ ∀x ∈ R, (89)∣∣∣∣ 1L

∫ L

0

(∫
R
h(x, y)dy

)
e−n(x)dx

∣∣∣∣ ≤ KA||h||Y ∗
(1 + |n|)γ+2

∀n ∈ Z. (90)

Proof. In the context of this proof, for any function h = h(x, y) ∈ Cb(R2) such that h(x, ·) ∈ L2(R)
and h(x+ L, y) = h(x, y) for all (x, y) ∈ R2, we denote

hj(x) :=

∫
R
h(x, y)Γj(y)dy, hnj :=

1

L

∫ L

0
hj(x)e−n(x)dx,

that is hnj is the n-th Fourier coefficient of hj , which is the j-th coordinate of h along the basis of
eigenfunctions (Γj)j∈N. We now define

Y ∗ :=

h ∈ C
2(R2)

∣∣∣∣∣∣∣∣∣
h(x+ L, y) = h(x, y), ∀x, y ∈ R,

∃C > 0, ∀|α| ≤ 2, |Dαh(x, y)| ≤ C
(1+y2)2

on R2,

∃K > 0, ∀n ∈ Z, ∀j ∈ N,
∣∣∣hnj ∣∣∣ ≤ K

(1+j)β(1+|n|)γ ×
1

1+j+n2

 , (91)

Z∗ :=

f ∈ C(R2)

∣∣∣∣∣∣∣∣∣
f(x+ L, y) = f(x, y), ∀x, y ∈ R,

∃C > 0, |f(x, y)| ≤ C
1+y2

on R2,

∃K > 0, ∀n ∈ Z, ∀j ∈ N,
∣∣∣fnj ∣∣∣ ≤ K

(1+j)β(1+|n|)γ

 ,

||h||Y ∗ :=
∑
|α|≤2

sup
(x,y)∈R2

∣∣(1 + y2)2Dαh(x, y)
∣∣+ sup

n∈Z,j∈N

[
(1 + j)β(1 + |n|)γ(1 + j + n2)

∣∣hnj ∣∣] , (92)
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||f ||Z∗ := sup
(x,y)∈R2

∣∣(1 + y2)f(x, y)
∣∣+ sup

n∈Z,j∈N

[
(1 + j)β(1 + |n|)γ

∣∣fnj ∣∣] .
The proof of Lemma 18 relies on applying the Implicit Function Theorem, namely Theorem 7, to
the function F = F (ε, h) defined by (39). Firstly, adapting the proof of Lemmas 12 and 13, one
can readily check that Y ∗, Z∗ are Banach spaces, that F : R × Y ∗ → Z∗ is well-defined, and that
conditions (i)—(ii) of Theorem 7 are satisfied, with DhF (0, 0) = L given by (40). It remains to prove
that L : Y ∗ → Z∗ is bijective. Following the same procedure as in subsection 4.2, we have that hj , fj
satisfy (44)—(45). We now use the Fourier coefficients: for n ∈ Z, we multiply equations (44)—(45)
by 1

Le−n(x) and integrate over x ∈ [0, L]. We obtain
(
−n2σ2 − (λj − λ0)

)
hnj = fnj , j ≥ 1,(

−n2σ2 + λ0

)
hn0 = fn0 + η

∑+∞
`=1 m`h

n
` , j = 0.

(93)

For j ≥ 1, since 0 < λj − λ0, we see that, for any n ∈ Z, there is a unique hnj ∈ C solving the first
equation in (93). Since f ∈ Z∗, we have

|fnj | ≤
||f ||Z∗

(1 + j)β(1 + |n|)γ
,

which leads to

|hnj | =
|fnj |

n2σ2 + 2jA
≤ K||f ||Z∗

(1 + j)β(1 + |n|)γ
× 1

1 + j + n2
,

for some K = K(A,L) > 0. From there, in view of (24) and β > 17
4 > 5

4 , the right-hand side of
the second equation of (93) is well-defined, and bounded by M ||f ||Z∗(1 + |n|)−γ for some M > 0
independent of n. Therefore we obtain

|hn0 | ≤
K||f ||Z∗

(1 + |n|)γ(1 + n2)
,

by taking K possibly larger. It remains to reconstruct h and prove that it belongs to Y ∗. Since
γ > 2 > 1, we have for any 0 ≤ k ≤ 2

h
(k)
j (x) =

∑
n∈Z

hnj (iσn)ken(x),

from which we deduce

||h(k)
j ||∞ ≤

K||f ||Z∗
(1 + j)β

∑
n∈Z

(σ|n|)k

(1 + |n|)γ+2
≤ C||f ||Z∗

(1 + j)β
,

for some C = C(A,L, γ) > 0. In other words, we obtain the estimates playing the roles of (49)—(51).
Then, like the rest of the proof in subsection 4.2, we prove that h ∈ Y ∗ since β > 17

4 . Thus L is
bijective. Finally, we apply Theorem 7, which leads to the existence of ε∗0 > 0 such that, for any
|ε| ≤ ε∗0, there exists a unique function hε ∈ Y ∗ such that F (ε, hε) = 0, with ||hε||Y ∗ → 0 as ε → 0.
Since n0 ∈ Y ∗, we deduce that nε(x, y) = n0(y) + hε(x, y) ∈ Y ∗ and nε solves (7).

To conclude, (86)—(88) simply follow from the definitions of Z,Yµ, Y ∗, given that (hx)nj = (inσ)hnj .
Meanwhile, (89)—(90) is proved in the same way as (78)—(79).

5.2 Checking assumptions (i) and (ii) of Theorem 7

For the rest of this section, we assume that |ε| ≤ ε∗0, where ε∗0 is obtained from Lemma 18. We also
recall that µ ∈ (0, 1). Equipped with the above spaces Yµ and Z, we thus consider

Fµ(ε, s, v) = vzz + 2vxz + (1 + µ)vxx + vyy + (c0 + s)vz + sU ′(z)nε(x, y) + 2U ′(z)nεx(x, y)

+ v

(
1−A2(y − εθ(x))2 − U(z)

∫
R
nε(x, y′)dy′ −

∫
R
v(z, x, y′)dy′

)
− U(z)nε(x, y)

∫
R
v(z, x, y′)dy′ + U(z)(1− U(z))nε(x, y)

(
λ0 +

∫
R
nε(x, y′)dy′

)
.

Recall that nε(x, y) = n0(y) when ε = 0 and
∫
R n

0(y′)dy′ = −λ0. Consequently Fµ(0, 0, 0) = 0.
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Checking assumptions (i) and (ii) of Theorem 7. Fix µ ∈ (0, 1). We first prove that Fµ : Yµ → Z is
well-defined and continuous at (0, 0, 0). Since all terms of Fµ(ε, s, v) are obviously L-periodic in x,
and since Fµ(0, 0, 0) = 0, it suffices to prove that each term of Fµ(ε, s, v) tends to zero in the norm
|| · ||Z as |ε|+ |s|+ ||v||Yµ → 0. Firstly, Lemma 17 and the fact that θ satisfies (66) imply

∃C > 0, ∀µ ∈ (0, 1), ∀v ∈ Yµ, ||w||Z ≤ µ−1C||v||Yµ −−−→
v→0

0,

for any w ∈ {Dαv, y2v, yθv, θ2v} and |α| ≤ 2. Next, let us recall that v satisfies (78)—(79), and from
Lemma (18), nε satisfies (89)—(90). As a result, since |U(z)| ≤ 1 the functions U(z)

∫
R n

ε(x, y′)dy′

and
∫
R v(z, x, y′)dy′ are uniformly bounded and satisfy (83) with ρ = 1 and Kb = KA. From Lemma

17, we thus deduce∥∥∥∥v(z, x, y)U(z)

∫
R
nε(x, y′)dy′

∥∥∥∥
Z
≤
(
C1KA +

π

2

)
||nε||Y ∗ ||v||Yµ −−−→

v→0
0,∥∥∥∥v(z, x, y)

∫
R
v(z, x, y′)dy′

∥∥∥∥
Z
≤
(
C1KA +

π

2

)
||v||2Yµ −−−→v→0

0. (94)

We now look at the term U(z)nε(x, y)
∫
R v(z, x, y′)dy′. Since |U(z)| ≤ 1, nε satisfies (88), and v satisfies

(79), we have

U(z)nε(x, y)

∫
R
v(z, x, y′)dy′ = nε(x, y)e−κ|z|︸ ︷︷ ︸

∈Yµ

×U(z)

∫
R
v(z, x, y′)eκ|z|dy′.︸ ︷︷ ︸

satisfies (83) with ρ=1,Kb=KA

Thus, thanks to (78) and (84), we have∥∥∥∥U(z)nε(x, y)

∫
R
v(z, x, y′)dy′

∥∥∥∥
Z
≤
(
C1KA +

π

2

)
||v||Yµ ||nεe−κ|z|||Yµ

≤ Kκ

(
C1KA +

π

2

)
||v||Yµ ||nε||Y ∗ −−−→

v→0
0.

Next, it is well-known that, since κ < −1
2c0 + 1

2

√
c2

0 − 4λ0,

∃CU > 0, ∀z ∈ R, U(1− U)(z), |U ′(z)| ≤ CUe−κ|z|.

Therefore, from (86)—(88), there holds

||sU ′(z)nε(x, y)||Z ≤ CU |s| ||e−κ|z|nε(x, y)||Z ≤ CU |s| ||nε||Y ∗ −−−→
s→0

0,

||U ′(z)nεx(x, y)||Z = ||U ′(z)(nε − n0)x(x, y)||Z ≤ CUKσ||nε − n0||Y ∗ −−−→
ε→0

0.

Finally, setting

bε(z, x) := U(z)(1− U(z))eκ|z|
(
λ0 +

∫
R
nε(x, y′)dy′

)
= U(z)(1− U(z))eκ|z|

∫
R

(nε(x, y′)− n0(y′))dy′,

we have, since (89)—(90) holds, that ||bε||L∞(R2) ≤ CU π2 ||n
ε−n0||Y ∗ and satisfies (83) with ρ = 2 and

Kbε = KACU ||nε − n0||Y ∗ . Therefore from (84) we deduce

||bε(z, x)e−κ|z|nε(x, y)||Yµ ≤ (C2Kbε + ||bε||∞) ||nε||Y ∗ =
ε→0
||nε||Y ∗ × o(1).

Therefore Fµ is well-defined and continuous at (0, 0, 0).
We now compute D(s,v)Fµ(0, 0, 0), that is the Fréchet derivative of Fµ along the (s, v) variables at

point (0, 0, 0). We have Fµ(0, s, v) = Lµ(s, v) +R(s, v) where R(s, v) = svz − v
∫
R v(z, x, y′)dy′ and

Lµ(s, v) = vzz + 2vxz + (1 + µ)vxx + vyy + c0vz + sU ′(z)n0(y)

+ v
(
1−A2y2 + λ0U(z)

)
− U(z)n0(y)

∫
R
v(z, x, y′)dy′.

(95)

We readily check from (81) and (94) that R(s, v) = o
(
|s|+ ||v||Yµ

)
. The continuity of Lµ is a con-

sequence of the controls obtained above. Consequently, D(s,v)Fµ(0, 0, 0) = Lµ. It remains to prove
the continuity of D(s,v)Fµ around (0, 0, 0). This results from similar arguments as above. Details are
omitted.
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5.3 Bijectivity of Lµ

In this subsection we prove that, if µ > 0 is small enough, Lµ is bijective from R×Sµ to Z, where Sµ
is a subset of Yµ that will be determined later. We proceed by analysis and synthesis. Fix f ∈ Z, and
assume there exist (s, v) ∈ R × Yµ such that Lµ(s, v) = f . Naturally, s and v depend a priori on µ,
but to ease the readability we shall omit this dependence in the notations.

5.3.1 Decoupling in x and y

Thanks to (74) and (76), we have v(z, x, ·), f(z, x, ·) ∈ L2(R) for all z, x ∈ R. Since the family of
eigenfunctions (Γj)j∈N of Proposition 8 forms a Hilbert basis of L2(R), we can write

v(z, x, y) =

∞∑
j=0

vj(z, x)Γj(y), f(z, x, y) =

∞∑
j=0

fj(z, x)Γj(y), (96)

where we used the notation (67) for vj and fj . Since (v, f) ∈ Yµ×Z, all functions vj , fj are L-periodic
in x, we may compute their Fourier coefficients in x:

vj(z, x) =
∑
n∈Z

vnj (z)en(x), fj(z, x) =
∑
n∈Z

fnj (z)en(x), (97)

where we used the notation (68)—(69) for vnj , f
n
j , and en. Note that the equalities (96)—(97) corre-

spond, a priori, to a convergence of the series in the L2(R) and L2(0, L) norms respectively. However,
since γ > 3 > 1, we deduce from (75) and (77) that equalities in (97) hold pointwise. Additionally,
vj ∈ C2

b (R2) and fj ∈ Cb(R) with

||fj ||L∞(R2) ≤
||f ||Z

(1 + j)β
,

and the pointwise equality

Dp
zD

q
xvj(z, x) =

∑
n∈Z

(vnj )(p)(z)(iσn)qen(x), (p+ q ≤ 2),

which leads to

||Dp
zD

q
xvj ||L∞(R2) ≤

C||v||Yµ
(1 + j)β

, (p+ q ≤ 2),

for some C = C(γ). Next, since β > 19
4 > 5

4 and (25) holds, the series in (96) are also normally
convergent, which leads to pointwise equalities in (96). Additionally, since β > 19

4 > 9
4 , with (26) we

have the following pointwise equality:

Dp
zD

q
xD

r
yv(z, x, y) =

∑
j∈N

Dp
zD

q
xvj(z, x)Γ

(r)
j (y), (p+ q + r ≤ 2),

and since (24) holds, we also have∫
R
v(z, x, y)dy =

∞∑
j=0

vj(z, x)

∫
R

Γj(y)dy =
∞∑
j=0

mjvj(z, x),

where we recall the notation mj :=
∫
R Γj(y)dy.

Let us recall that n0 is given by (8) and that Γ′′j + (1 − A2y2)Γj = −λjΓj from Proposition 8.
Consequently, when projecting the equation Lµ(s, v) = f along Γj , we obtain

(vj)zz + 2(vj)xz + (1 + µ)(vj)xx + c0(v0)z − (λj − λ0U(z)) vj = fj , j ≥ 1, (98)

(v0)zz + 2(v0)xz + (1 + µ)(v0)xx + c0(v0)z − λ0 (1− 2U(z)) v0 = f0 − ηU ′(z)s+ ηU(z)
∞∑
`=1

m`v`. (99)
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Then, multiplying (98) and (99) by 1
Le−n(x) and integrating over x ∈ [0, L], we obtain

En,j,µ[vnj ] := (vnj )′′ + (2inσ + c0) (vnj )′ −
(
λj − (1 + δ0j)λ0U(z) + (1 + µ)n2σ2

)
vnj =

{
fnj (z) j ≥ 1,

f̃n0 (z) j = 0,

(100)
where we recall σ := 2π

L > 0 and denote

f̃n0 (z) := fn0 (z)− ηU ′(z)sδn0 + ηU(z)
∞∑
`=1

m`v
n
` (z). (101)

Finally, we define the operator

Ln,j,µ : E2
κ → E0

κ (102)
u 7→ En,j,µ[u],

where for any k ∈ N we set

Ekκ :=
{
g ∈ Ck(R,C) : ||g||κ,k <∞

}
, ||g||κ,k :=

k∑
r=0

||g(r)(z)eκ|z|||L∞ . (103)

The proof for the rest of subsection 5.3 is organized as follows.

• In subsection 5.3.2, we construct a fundamental system of solutions of the homogenous equations
associated to (100).

• Then, in subsection 5.3.3, we fix the value of κ and investigate the injectivity of the linear
operators Ln,j,µ. To ensure that each Ln,j,µ is injective, we may redefine some of them on a
smaller space Sn,j,µ ⊂ E2

κ.

• Next, in subsection 5.3.4, for any j ≥ 1, we construct explicitly the solution of (100), which
proves the surjectivity of Ln,j,µ. We also prove that, for any n ∈ Z, j ≥ 1 and µ > 0 small
enough, vnj satisfies (128).

• Afterwards, in subsection 5.3.5, we prove that f̃n0 satisfies a bound of the type (77). The con-
struction of vn0 then follows in the same way, except for the case n = 0, where we shall also prove
the existence and uniqueness of s.

• Finally, in subsection 5.3.6, we prove the existence and uniqueness of s ∈ R and v ∈ Sµ ⊂ Yµ
such that Lµ(s, v) = f , where Sµ is constructed from the spaces Sn,j,µ.

5.3.2 Fundamental system of solutions for the homogeneous problem

We consider the homogeneous equation associated to (100), that is

k′′ + (2inσ + c0) k′ −
(
λj − (1 + δ0j)λ0U(z) + (1 + µ)n2σ2

)
k = 0. (104)

Although we assumed 0 < µ < 1, we also need to consider solutions of (104) for µ = 0. For that reason
we shall assume in this subsection that 0 ≤ µ < 1 unless otherwise stated.

To construct a fundamental system of solutions of (104), we first take the limit z → ±∞ in the
coefficients of (104), and thus consider

k′′ + (2inσ + c0) k′ −
(
λj − (1 + δ0j)λ0 + (1 + µ)n2σ2

)
k = 0, (105)

and
k′′ + (2inσ + c0) k′ −

(
λj + (1 + µ)n2σ2

)
k = 0. (106)
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A fundamental system of solutions of (105) is given by z 7→ ea
±
n,j,µz with4

a±n,j,µ =
1

2

(
−2inσ − c0 ±

√
4µn2σ2 + c2

0 + 4inσc0 + 4 [(1− δ0j)λj − λ0]

)
. (107)

Similarly, a system for (106) is given by z 7→ eb
±
n,j,µz with

b±n,j,µ =
1

2

(
−2inσ − c0 ±

√
4µn2σ2 + c2

0 + 4inσc0 + 4λj

)
. (108)

Note that, for all (n, j) ∈ Z× N and 0 ≤ µ < 1, one can straightforwardly check that

Re a−n,j,µ < 0 < Re a+
n,j,µ, Re b−n,j,µ < 0, (109)

sign
(
Re (b+n,j,µ)

)
= sign

(
λj + (1 + µ)n2σ2

)
, (110)

Re
(
a+
n,j,µ − a

−
n,j,µ

)
> 0, Re

(
b+n,j,µ − b

−
n,j,µ

){> 0 if (n, j, c0) 6= (0, 0, c∗0),

= 0 otherwise,
(111)

with the convention sign(0) = 0 and where we recall c0 ≥ c∗0 := 2
√
−λ0. We have the following

estimates.

Lemma 19 (Estimates related to a±n,j,µ, b
±
n,j,µ). There exist C,C > 0 such that for any (n, j) ∈ Z×N

and 0 ≤ µ < 1, there holds
|a±n,j,µ|, |b

±
n,j,µ| ≤ C

(
1 + |n|+

√
j
)
, (112)∣∣∣a+

n,j,µ − a
−
n,j,µ

∣∣∣ , ∣∣∣b+n,j,µ − b−n,j,µ∣∣∣ ≥ C√µn2 + j + |n|, (113)∣∣∣Re a±n,j,µ

∣∣∣ , ∣∣∣Re b±n,j,µ

∣∣∣ ≥ C√µn2 + j + |n| − c0, (114)

Re
(
a+
n,j,µ − a

−
n,j,µ

)
, Re

(
b+n,j,µ − b

−
n,j,µ

)
≥ C

√
j + |n|, (115)

|a±n,j,µ − b
±
n,j,µ| ≤ C. (116)

Proof. The proofs of estimates (112)—(115) are straightforward and omitted. As for (116), notice that

−2
(
a−n,j,µ − b

−
n,j,µ

)
= 2(a+

n,j,µ − b
+
n,j,µ) =

√
Z(n, j, µ)− 4λ0(1 + δ0j)−

√
Z(n, j, µ),

where Z(n, j, µ) belongs to the half-plane H+ := {z ∈ C : Re z ≥ 0} for all n, j, µ. Therefore, setting
Λ := −4λ0(1 + δ0j) ∈ {−4λ0,−8λ0} > 0, it is enough to prove that the function h : Z ∈ H+ 7→√
Z + Λ−

√
Z is uniformly bounded, which is rather clear.

The construction of solutions for (104) follows from the following when (n, j) 6= (0, 0).

Lemma 20 (Fundamental system of (104) for (n, j) 6= (0, 0)). There exists µmax > 0 such that the
following results hold. Fix any (n, j) ∈ Z × N with (n, j) 6= (0, 0) and 0 ≤ µ < µmax. There exists a
fundamental system of solutions (ϕ−, ϕ+) of (104) such that

ϕ−(z) =

{
P−(z)ea

−
n,j,µz z ≤ 0,

Q−(z)eb
−
n,j,µz z ≥ 0,

ϕ+(z) =

{
P+(z)ea

+
n,j,µz z ≤ 0,

Q+(z)eb
+
n,j,µz z ≥ 0,

(117)

with P± ∈ C2
b (R−), Q± ∈ C2

b (R+) and a±n,j,µ, b
±
n,j,µ given by (107)—(108). Also, lim infz→−∞ |P−(z)| >

0 and lim infz→+∞ |Q+(z)| > 0.

4In what follows, for any z = reiθ ∈ C with r ≥ 0 and θ ∈]−π, π], we denote
√
z :=

√
reiθ/2. In particular, Re

√
z > 0

if z ∈ C\R−.
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Additionally, there exists Rmax > 0 such that

sup
(n,j)6=(0,0)

sup
0≤µ<µmax

sup
R∈{P±,Q±}

(
||R||∞ + ||R′||∞

)
≤ Rmax, (118)

where by convention the sup norm is taken over the domain of definition of R.
Next, there exists W0 > 0 such that for all (n, j) 6= (0, 0) and 0 ≤ µ < µmax, the Wronskian of

(ϕ−, ϕ+) at z = 0 satisfies
|Wϕ| :=

∣∣[ϕ′−ϕ+ − ϕ′+ϕ−
]

(0)
∣∣ ≥W0, (119)

Also, there exist CW , N0, J0 > 0 such that, if |n| ≥ N0 or j ≥ J0, we have for any such n, j

1

|Wϕ|
≤ CW√

1 + µn2 + j + |n|
, ∀µ ∈ [0, µmax). (120)

Finally, there exist ζ1, ζ2 > 0 such that for all (n, j) 6= 0 and 0 ≤ µ < µmax,∫ 0

−∞
|ϕ+(z)|2dz ≥ ζ1e

−ζ2 Re a+n,j,µ . (121)

The proof of Lemma 20, lengthy and technical, is postponed to Appendix A.1. The case n = j = 0
is simpler and reads as follows.

Lemma 21 (Fundamental system of (104) for (n, j) = (0, 0)). For all 0 ≤ µ < 1, a fundamental
system of solutions of (104) when n = j = 0 is given by (U ′,Υ), where U solves (16) and

Υ(z) := U ′(z)

∫ +∞

z

1

U ′(ω)2
e−c0ωdω. (122)

Additionally, we have

U ′(z) ≈−∞ ea
+
0,0,0z, U ′(z) ≈+∞

{
eb

+
0,0,0z if c0 > c∗0,

zeb
+
0,0,0z if c0 = c∗0,

(123)

Υ(z) ≈−∞ ea
−
0,0,0z Υ(z) ≈+∞

{
eb
−
0,0,0z if c0 > c∗0,

1
z e
b−0,0,0z if c0 = c∗0,

(124)

where A(z) ≈±∞ B(z) with B(z) > 0 means 0 < lim inf±∞
|A(z)|
B(z) < lim sup±∞

|A(z)|
B(z) < +∞.

Proof. Estimates (123) are classical results for the critical (c0 = c∗0) and supercritical (c0 > c∗0) Fisher-
KPP traveling waves. When n = j = 0, (104) amounts to

k′′ + c0k
′ − λ0 (1− 2U(z)) k = 0. (125)

Note that µ does not play any role here. First, we see that U ′ solves (125) since U solves (16). In this
case another solution (non-proportional to U ′) of (125) can be sought in the form of Υ(z) = g(z)U ′(z).
Using this, some straightforward computations yield that (122) is another solution. Then (124) follows
straightforwardly from (122) and (123).

5.3.3 Fixing the values κ and µmax, redefinitions of Ln,j,µ

Here, we shall fix the value of κ with the following Lemma.

Lemma 22 (Choice of κ). If µmax > 0 is small enough, there exists κ > 0 such that for all (n, j) ∈ Z×N
and 0 ≤ µ < µmax, we have

∣∣∣Re a±n,j,µ

∣∣∣ , ∣∣∣Re b−n,j,µ

∣∣∣ ≥ 2κ,∣∣∣Re b+n,j,µ

∣∣∣ ≥ 2κ, if Re b+n,j,µ < 0.

(126)

Also, there exist Cκ, N, J ≥ 0 such that if |n| ≥ N or j ≥ J , then for all 0 ≤ µ < µmax, we have

0 <
1

|Re a±n,j,µ| − κ
,

1

|Re b±n,j,µ| − κ
≤ Cκ√

1 + µn2 + j + |n|
. (127)
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Proof. Let us first prove (126). We define the following sets:

I :=
{

(n, j) ∈ Z× N : λj + n2σ2 < 0
}

=
{

(n, j) ∈ Z× N : Re b+n,j,0 < 0
}
,

Rµ :=
(
∪(n,j)∈Z×N

{∣∣∣Re a+
n,j,µ

∣∣∣ , ∣∣∣Re a−n,j,µ

∣∣∣ , ∣∣∣Re b−n,j,µ

∣∣∣})⋃(
∪(n,j)∈I

{∣∣∣Re b+n,j,µ

∣∣∣}) ,
for all 0 ≤ µ < µmax. Because of (109) and the definition of I, there holds 0 /∈ R0. Note that, due to
(114), the sets I and R0 ∩ [0, a+

0,0,0] are finite. Therefore we have

m := min
(
R0 ∩ [0, a+

0,0,0]
)

= minR0 > 0.

Now, because of (114), there exist N, J ≥ 0 such that for all 0 ≤ µ < µmax

Rµ ∩ [0, a+
0,0,µ] ⊂ ∪|n|≤N,j≤J

{∣∣∣Re a+
n,j,µ

∣∣∣ , ∣∣∣Re a−n,j,µ

∣∣∣ , ∣∣∣Re b−n,j,µ

∣∣∣ , ∣∣∣Re b+n,j,µ

∣∣∣} .
From (107)—(108) we easily obtain that

sup
|n|≤N, j≤J

∣∣∣Re a±n,j,µ − Re a±n,j,0

∣∣∣ −−−→
µ→0

0, sup
|n|≤N, j≤J

∣∣∣Re b±n,j,µ − Re b±n,j,0

∣∣∣ −−−→
µ→0

0.

As a result, taking µmax small enough, we have

inf
0≤µ<µmax

min
(
Rµ ∩ [0, a+

0,0,µ]
)

= inf
0≤µ<µmax

minRµ ≥
m

2
> 0.

Consequently, (126) holds with κ = m
4 > 0.

Finally, it remains to prove (127). Let C > 0 being given by Lemma 19. There exist N, J ≥ 0 such
that, if |n| ≥ N or j ≥ J , we have for all 0 ≤ µ < µmax√

µn2 + j + |n| ≥ 2

C
(c0 + κ) + 1.

We then deduce that

1

C
√
µn2 + j + |n| − c0 − κ

≤ Cκ

1 +
√
µn2 + j + |n|

≤ Cκ√
1 + µn2 + j + |n|

,

for Cκ = 2/C > 0. This yields (127) thanks to (114).

Let us recall that Ln,j,µ and Ekκ are defined by (102) and (103) respectively. We equip E2
κ with the

Hermitian inner product 〈g1, g2〉 :=
∫
R g1(z)g2(z)dz.

Lemma 23 (Injectivity of Ln,j,µ after redefinitions). Let µmax > 0 small enough so that both Lemmas
20 and 22 hold. Let (n, j) 6= (0, 0), µ ∈ (0, µmax) and κ > 0 given by Lemma 22.

If Re b+n,j,µ ≥ 0, then Ln,j,µ is injective.
If Re b+n,j,µ < 0, then we set Sn,j,µ := {ϕ+}⊥ ⊂ E2

κ, and we redefine Ln,j,µ : Sn,j,µ → E0
κ as an

injective operator.
Finally, we set S0,0 := {U ′}⊥ ⊂ E2

κ , and we redefine L0,0,µ : S0,0 → E0
κ as an injective operator.

Proof. Let n, j, µ satisfy the above conditions. Let us recall that from Lemma 20, the solutions of
En,j,µ[u] = 0 are exactly C−ϕ−+C+ϕ+ with C± ∈ C. Note that ϕ− /∈ E2

κ since |ϕ−(−∞)| = +∞ from
(109) and (117).

If Re b+n,j,µ ≥ 0, then from (117) we also have ϕ+ /∈ C0(R,C), so that ϕ+ /∈ E2
κ, which implies

kerLn,j,µ is trivial.
If Re b+n,j,µ < 0, then from (117) and (126), we have ϕ+ ∈ E2

κ. Therefore kerLn,j,µ = span(ϕ+).
Setting Sn,j,µ := {ϕ+}⊥, we have that Ln,j,µ : Sn,j,µ → E0

κ is injective.
The last assertion for L0,0,µ is proved similarly, using (123)—(124) and (126).
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5.3.4 Solving (100) when j ≥ 1

For the rest of this section, we fix µmax, κ > 0 small enough such that Lemmas 20 and 22 are valid.
From Lemma 20, we are equipped with (ϕ−, ϕ+) given by (117), which is a fundamental system of
solutions of (104). Let us mention that by construction κ < a+

0,0,0 = −1
2c0 + 1

2

√
c2

0 − 4λ0, which is
consistent with our assumption at the beginning of subsection 5.1.

In this subsection, we prove that, for each n ∈ Z, j ≥ 1, and 0 < µ < µmax there exists a unique vnj
such that Ln,j,µvnj = fnj . Additionally, we shall prove the existence of K > 0 independent of n, j, µ, f
such that∣∣∣(vnj )(k)(z)

∣∣∣ ≤ K||f ||Z e−κ|z|

(1 + j)β(1 + |n|)γ
× 1 + |n|k + jk/2

1 + µn2 + j + |n|
, k ∈ {0, 1, 2}, ∀z ∈ R. (128)

Let us recall that f satisfies (77), and thus fnj ∈ E0
κ. In what follows, we denote a± = a±n,j,µ and

b± = b±n,j,µ when there is no confusion. We shall split the proof in two subcases, depending on the sign
of Re b+.

Indexes (n, j, µ) such that j ≥ 1 and Re b+n,j,µ ≥ 0. For such n, j, µ, we have the injectivity of
Ln,j,µ : E2

κ → E0
κ from Lemma 23, so there is at most one solution vnj ∈ E2

κ of (100). To prove its
existence, we construct explicitly a solution with the variation of the constant, that is

vnj (z) = ϕ−(z)

∫ z

−∞

1

W (ω)
ϕ+(ω)fnj (ω)dω + ϕ+(z)

∫ +∞

z

1

W (ω)
ϕ−(ω)fnj (ω)dω,

where we denote the Wronskian W (ω) :=
[
ϕ′−ϕ+ − ϕ′+ϕ−

]
(ω) 6= 0. Also, notice that since (ϕ−, ϕ+)

solve (100), there holds

W (ω) = W (0)e−(c0+2inσ)ω = W (0)e(a++a−)ω = W (0)e(b++b−)ω.

To prove that vnj satisfies Ln,j,µvnj = fnj , it suffices to prove that vnj ∈ E2
κ. It is in particular enough to

prove that vnj satisfies (128).
Let us first prove that (128) holds for k = 0. For all z ≥ 0, there holds

vnj (z) = Q−(z)eb
−z

(∫ 0

−∞

P+(ω)

Wϕ
e−a

−ωfnj (ω) +

∫ z

0

Q+(ω)

Wϕ
e−b

−ωfnj (ω)dω

)
+Q+(z)eb

+z

(∫ +∞

z

Q−(ω)

Wϕ
e−b

+ωfnj (ω)dω

)
,

where we recall that W (0) = Wϕ satisfies (119). Combining (77), (118) and (126), we obtain

|vnj (z)| ≤ R2
max||f ||Z

|Wϕ| (1 + j)β(1 + |n|)γ
×[

eRe b−z

(∫ 0

−∞
e−Re a−ωeκωdω +

∫ z

0
e−Re b−ωe−κωdω

)
+ eRe b+z

∫ +∞

z
e−Re b+ωe−κωdω

]
≤ R2

max||f ||Z
|Wϕ| (1 + j)β(1 + |n|)γ

×

(
eRe b−z

−Re a− + κ
+
e−κz − eRe b−z

−Re b− − κ
+

e−κz

Re b+ + κ

)

≤ R2
max||f ||Z

|Wϕ| (1 + j)β(1 + |n|)γ

(
1

−Re a− + κ
+

1

−Re b− − κ
+

1

Re b+ + κ

)
e−κz.

Let N0 = max(N0, N) and J0 = max(J0, J), where N0, J0 are given by Lemma 20 and N, J are given
by Lemma 22. If |n| ≥ N0 or j ≥ J0, then (120) and (127) hold. Therefore

|vnj (z)| ≤ 3CWCκR
2
max||f ||Ze−κz

(1 + j)β(1 + |n|)γ
× 1

1 + µn2 + j + |n|
, if |n| ≥ N0 or j ≥ J0. (129)

33



Meanwhile, if |n| ≤ N0 and j ≤ J0, we have from (119) and (126) that

|vnj (z)| ≤ 3R2
max||f ||Ze−κz

κW0(1 + j)β(1 + |n|)γ
, if |n| ≤ N0 and j ≤ J0. (130)

Note that N0, J0 do not depend on µ ∈ (0, µmax). Therefore, combining (129)—(130), there exists
K > 0 independent of n, j, µ, f such that (128) holds for k = 0, z ≥ 0. The proof is similar for z ≤ 0.

Let us now prove that (128) is valid for k = 1. Note that

(vnj )′(z) = ϕ′−(z)

∫ z

−∞

1

W (ω)
ϕ+(ω)fnj (ω)dω + ϕ′+(z)

∫ +∞

z

1

W (ω)
ϕ−(ω)fnj (ω)dω.

Then similar calculations and arguments yield that if |n| ≥ N0 or j ≥ J0, then for any z ∈ R

∣∣(vnj )′(z)
∣∣ ≤ 3CWCκR

2
max||f ||Ze−κz

(1 + j)β(1 + |n|)γ
× 1 + max (|a+|, |a−|, |b+|, |b−|)(

1 +
√
µn2 + j + |n|

)2 ,

thus, using (112), we obtain

|(vnj )′(z)| ≤ 3CWCκ(1 + C)R2
max||f ||Ze−κz

(1 + j)β(1 + |n|)γ
× 1 + |n|+

√
j

1 + µn2 + j + |n|
.

Meanwhile, if |n| ≤ N0 and j ≤ J0, then in the same fashion, for any z ∈ R, there holds

|(vnj )′(z)| ≤ 3R2
max||f ||Ze−κz

κW0(1 + j)β(1 + |n|)γ
×
[
1 + max

(
|a+|, |a−|, |b+|, |b−|

)]
≤ 3R2

max||f ||Ze−κz

κW0(1 + j)β(1 + |n|)γ

(
1 + max

|n|≤N0,j≤J0,0≤µ≤µmax
max

(
|a+
n,j,µ|, |a

−
n,j,µ|, |b

+
n,j,µ|, |b

−
n,j,µ|

))
.

Likewise, taking K > 0 possibly even larger, vnj satisfies (128) for k = 1. Finally, since (128) is proved
for k ∈ {0, 1}, the proof for k = 2 is a direct consequence, with a possibly larger K > 0, since vnj solves
(100) and (77) holds. Therefore, assuming j ≥ 1 and Re b+n,j,µ ≥ 0, (128) holds with K > 0 that does
not depend on n, j, µ, f .

Indexes (n, j, µ) such that j ≥ 1 and Re b+n,j,µ < 0. For such n, j, µ, from Lemma 23, the operator
Ln,j,µ : Sn,j,µ → E0

κ is injective with Sn,j,µ = {ϕ+}⊥. We define the family

χξ(z) := ξϕ+(z) + ϕ−(z)

∫ z

−∞

1

W (ω)
ϕ+(ω)fnj (ω)dω + ϕ+(z)

∫ z

0

1

W (ω)
ϕ−(ω)fnj (ω)dω, ξ ∈ C.

Owing to the variation of the constant, we see that χξ solves (100). Using (77), (118)—(119) and
(126) as we did above, one can readily check that χξ ∈ E2

κ for all ξ ∈ C. Thus there is a unique
ξ0 = − 〈χ0,ϕ+〉

〈ϕ+,ϕ+〉 ∈ C such that χξ0 ∈ Sn,j,µ. Therefore, the equation Ln,j,µvnj = fnj admits a unique
solution, given by vnj = χξ0 .

It remains to prove that vnj satisfies (128). First, notice that Re b+n,j,µ < 0 implies, from (110), that
(n, j) belongs to a finite set S ⊂ Z × N+, independently of µ ∈ (0, µmax). Fix now (n, j) ∈ S. It can
be readily checked that there exists Cn,j > 0 independent of f such that

||ϕ+||κ,2 ≤ Cn,j , ||χ0||κ,2 ≤ Cn,j ||f ||Z , ∀µ ∈ (0, µmax).

We claim that there exists C ′n,j > 0 independent of f such that |ξ0| ≤ C ′n,j ||f ||Z for all µ ∈ (0, µmax).
On the one hand, by the Cauchy-Schwarz inequality

|〈χ0, ϕ+〉| ≤

√∫
R
|χ0(z)|2dz

∫
R
|ϕ+(z)|2dz ≤ 1

κ
||χ0||κ,0||ϕ+||κ,0 ≤

1

κ
C2
n,j ||f ||Z .
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On the other hand, we have from (121)

|〈ϕ+, ϕ+〉| ≥ ζ1e
−ζ2 Re a+ ≥ ζ1e

−ζ2M , M := max
(n,j)∈S

max
0≤µ≤1

Re a+
n,j,µ > 0.

Therefore we deduce that such C ′n,j exists. Thus, we have ||vnj ||κ,2 ≤
(

1 + C ′n,j

)
Cn,j ||f ||Z for all

(n, j) ∈ S and 0 < µ < µmax. Since the set S is finite, takingK > 0 possibly even larger, independently
of n, j, µ, f , we deduce that vnj satisfies (128).

5.3.5 Solving (100) when j = 0

From subsection 5.3.4, we are now equipped with vnj = L−1
n,j,µ(fnj ) for every n ∈ Z, j ≥ 1 and

0 < µ < µmax. Also, there exists K > 0 independent of n, j, µ, f such that those vnj satisfy (128).
Therefore, since (24) holds and β > 19

4 > 5
4 , we have∣∣∣∣∣

∞∑
`=1

m`v
n
` (z)

∣∣∣∣∣ ≤ K||f ||Z e−κ|z|

(1 + |n|)γ
× Σ, Σ :=

∞∑
`=1

|m`|
(1 + j)β

<∞.

Let us recall that f̃n0 is defined by (101). Since (77) holds, we deduce that

∃C > 0, ∀n 6= 0, ∀µ ∈ (0, µmax)
∣∣∣f̃n0 (z)

∣∣∣ ≤ C||f ||Z e−κ|z|

(1 + |n|)γ
, (131)

As a consequence, for any n 6= 0, we prove, in the same manner as in subsection 5.3.4, that vn0 satisfies
(128) if K > 0 is large enough, independently of n, µ, f .

The case n = j = 0 is particular since this is the only equation where s, i.e. our perturbed speed,
appears. Given that L0,0,µ does not depend on µ, we denote it L0,0 from now on. Let us recall that
from Lemma 23, L0,0 : S0,0 → E0

κ is injective. Repeating the same arguments as above, we prove that
L0,0 is surjective, thus bijective. Now, we set

h(z) := L−1
0,0(U ′), Ŝ0,0 :=

{
U ′
}⊥ ∩ {h}⊥ ⊂ E2

κ, (132)

and we define the following operator as a restriction of L0,0:

L̂0,0 : Ŝ0,0 ⊂ E2
κ → E0

κ.

It is clear that L̂0,0 is not bijective since Ŝ0,0 ( S0,0. However, we shall prove that the linear operator

M : C× Ŝ0,0 → E0
κ

(s, v) 7→ ηU ′(z)s+ L̂0,0v

is bijective. Assume thatM(s, v) = 0. Then

L̂0,0v = L0,0v = −ηU ′(z)s,

which implies v = −ηsh. Since Ŝ0,0 ⊂ {h}⊥, we deduce that s = 0, thus v = 0. Therefore M is
injective. Let us now prove thatM is surjective. For any f ∈ E0

κ, we set

s =
〈L−1

0,0f, h〉
η〈h, h〉

, v = L−1
0,0(f − ηsU ′) = L−1

0,0f − ηsh.

By definition of L0,0, we have v ∈ {U ′}⊥, thus v ∈ Ŝ0,0 by our choice of s. Finally, L̂0,0v = L0,0v =
f − ηsU ′, so that we indeed haveM(s, v) = f . HenceM is bijective.
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To conclude, we return to (100) for n = j = 0. Note that, with f ∈ Z being given, the functions
(v0
` )`≥1 are uniquely determined from subsection 5.3.4. From now on, we rewrite L0,` := L0,`,µ since

those operators do not, in fact, depend on µ. Therefore we may recast (100) as

ηU ′(z)s+ E0,0,0[v0
0] = f0

0 (z) + ηU(z)

∞∑
`=1

m`L−1
0,` (f

0
` ) =: Φf (z). (133)

From the bijectivity ofM, there thus exists a unique couple (s, v0
0) ∈ C×Ŝ0,0 solving (133). We claim

that
s ∈ R, |s| ≤ K0||f ||Z , |v0

0(z)| ≤ K0||f ||Ze−κ|z|, ∀z ∈ R, (134)

for some K0 > 0 independent of f, µ. On the one hand, from (67)—(69), we see that f0
` is real-valued

for all ` ∈ N. On the other hand, note that for any ` ∈ N, L0,` has real coefficients. By uniqueness of
the solution of L0,`v

0
` = f0

` for all ` ≥ 1, the functions v0
` are also real-valued. Therefore Φf (z) ∈ R

and does not depend on µ. Also, repeating the same arguments that we used to obtain (131), we have
||Φf ||κ,0 ≤ CΦ||f ||Z for some CΦ > 0 independent of f, µ. Now, invertingM, we obtain

s =

∫
R

[
L−1

0,0Φf

]
(z)h(z)dz

η
∫
R |h(z)|2dz

. (135)

Similarly as above, h = L−1
0,0(U ′) is real-valued and does not depend on µ. Therefore s ∈ R does not

depend on µ, and there holds

|s| ≤
CΦ||L−1

0,0|| ||h||κ,0
κη
∫
R |h(z)|2dz

||f ||Z . (136)

Therefore, s satisfies (134) for K0 large enough. One can readily check that the same is true for
v0

0 = L−1
0,0(Φf )− ηsh.

Combining the results of subsections 5.3.4 and 5.3.5, we have thus proved the following.

Proposition 24 (Results of subsections 5.3.4 and 5.3.5). There exist µmax, κ > 0 so that for any fixed
µ ∈ (0, µmax), the following results hold: there exists a finite set Iµ ⊂ Z × N, and a family of subsets
(Sn,j,µ)(n,j)∈Iµ of E2

κ, such that there exist a unique s ∈ R and, for any (n, j) ∈ Z× N, a unique

vnj

{
∈ Sn,j,µ if (n, j) ∈ Iµ,
∈ E2

κ otherwise,

such that (100) holds. Additionally, there exists K > 0 independent of n, j, µ, f such that (128) holds.
Finally, with h,Φf being defined by (132)—(133), the real s is given by (135), satisfies (136), and

does not depend on µ.

5.3.6 Reconstruction of v = vµ so that Lµ(s, vµ) = f

The set Sµ. Let us fix 0 < µ < µmax. Let us recall that en is defined by (69). We set

Sµ :=
⋂

(n,j)∈Iµ

{
(z, x, y) 7→ V (z)en(x)Γj(y) : V ∈ S⊥n,j,µ

}⊥
⊂ Yµ,

the second orthogonal being taken according to the following hermitian product on Yµ:

〈u, v〉Yµ =

∫
R

∫ L

0

∫
R
u(z, x, y)v(z, x, y)dydxdz.

Since Iµ is finite, it is clear that Sµ is non-empty. Furthermore, Sµ is closed for the topology associated
to 〈·, ·〉, and also for the topology of Yµ, by virtue of the dominated convergence theorem. Therefore
Sµ is a Banach space when equipped with || · ||Yµ defined by (72). Note also that Fµ redefined as a
function of R×R× Sµ to Z still satisfies conditions (i)—(ii) of Theorem 7, since we only restrict the
departure space.
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Bijectivity of Lµ. Let us prove that Lµ : R× Sµ → Z given by (95) is bijective. From Proposition
24 and (96)—(97), we already have that Lµ is injective. Let us now prove that Lµ is surjective. Since
most of the arguments were already used in subsection 4.2, we only give a short proof. We are equipped
with s and vnj = vnj (z) provided by Proposition 24. Notice that (128) implies∣∣∣(vnj )(k)(z)

∣∣∣ ≤ K||f ||Z 1

(1 + j)β(1 + |n|)γ+1−k , ∀µ ∈ (0, µmax), ∀k ≤ 2. (137)

Now, we define

vµ(z, x, y) :=

+∞∑
j=0

(
+∞∑

n=−∞
vnj (z)en(x)

)
Γj(y). (138)

Because (25)—(26) hold and vnj satisfies (137) with β > 19
4 > 9

4 and γ > 3 > 2, the function vµ is
well-defined, L-periodic in x and belongs to C2(R3) with

Dp
zD

q
xD

r
yvµ(z, x, y) =

+∞∑
j=0

(
+∞∑

n=−∞
(vnj )(p)(z)(inσ)qen(x)

)
Γ

(r)
j (y), p+ q + r ≤ 2.

Similarly, using (27), since β > 19
4 > 17

4 and γ > 3 > 2, and because K does not depend on µ, f , there
holds

∃C > 0, ∀µ ∈ (0, µmax), |Dαvµ(z, x, y)| ≤ C||f ||Z
e−κ|z|

(1 + y2)2
, (139)

for any |α| ≤ 2 and (z, x, y) ∈ R3. Thus vµ ∈ Yµ. By construction vµ ∈ Sµ and satisfies Lµ(s, vµ) = f .
Therefore Lµ is bijective.

Boundedness of ||(Lµ)−1|| w.r.t. µ. From Proposition 24 and (139), we see that

||vµ||Yµ ≤ (C +K)||f ||Z , ∀µ ∈ (0, µmax),

where C,K > 0 do not depend on f . Meanwhile, s satisfies a similar estimate in (136) and does not
depend on µ. As a consequence,

∃CL > 0, ∀µ ∈ (0, µmax), ||(Lµ)−1|| ≤ CL. (140)

5.4 Construction of (sε,µ, vε,µ) solving Fµ(ε, s, v) = 0

Let us fix µ ∈ (0, µmax), and recall that ε∗0 > 0 has been fixed by Lemma 18. From subsections 5.1,
5.2 and 5.3.6, we can apply Theorem 7 to the function Fµ at the point (0, 0, 0). Hence there are
0 < ε0 ≤ ε∗0 and r > 0 that depend a priori on µ, such that, for any |ε| < ε0, the following holds: there
is a unique sε,µ ∈ R and vε,µ ∈ Sµ ⊂ Yµ for which |sε,µ|+ ||vε,µ||Yµ ≤ r and Fµ(ε, sε,µ, vε,µ) = 0.

We shall now prove that ε0, r can be selected independently of µ, which is crucial for letting µ→ 0
in the next subsection. To do so we have to redo the proof of Theorem 7 in a more accurate way than
depicted in [50], which warrants to be detailed here. Set

Tε,µ : R× Sµ → R× Sµ
(s, v) 7→ (s, v)− (Lµ)−1 (Fµ(ε, s, v)) .

It is clear that Fµ(ε, s, v) = 0 if and only if (s, v) is a fixed point of Tε,µ. Now, notice that Fµ(ε, s, v) =
Lµ(s, v) + Gµ(ε, s, v), where

Gµ(ε, s, v) = svz + v

(
2A2εyθ(x)−A2ε2θ(x)2 − U(z)

∫
R

(nε − n0)(x, y′)dy′ −
∫
R
v(z, x, y′)dy′

)
− U(z)(nε − n0)

∫
R
v(z, x, y′)dy′ + sU ′(z)(nε − n0) + 2U ′(z)nεx

+ U(z)(1− U(z))nε
∫
R

(nε − n0)(x, y′)dy′. (141)
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Therefore Tε,µ(s, v) = −(Lµ)−1 (Gµ(ε, s, v)). Note that

[
D(s,v)Gµ(ε, s, v)

]
(τ, w) = swz + τvz + w

(
2A2εyθ(x)−A2ε2θ(x)2 − U(z)

∫
R

(nε − n0)(x, y′)dy′
)

− w
∫
R
v(z, x, y′)dy′ − v

∫
R
w(z, x, y′)dy′

− U(z)(nε − n0)

∫
R
w(z, x, y′)dy′ + τU ′(z)(nε − n0).

Let us recall that θ satisfies (66) with k+δ > γ+ 1
2 . In particular, θ satisfies (83) with ρ = k+δ−γ > 1/2

and Kb = Kθ. Repeating the same arguments as in subsection 5.2, we have

||swz||Z ≤ C|s| ||w||Yµ , ||τvz||Z ≤ C|τ | ||v||Yµ ,

||yθw||Z ≤
(
C ′ρKθ + ||θ||∞

)
||w||Yµ , ||θ2w|| ≤ (CρKθ + ||θ||∞) ||w||Yµ ,∥∥∥∥Uw ∫

R
(nε − n0)(x, y′)dy′

∥∥∥∥
Z
≤
(
C1KA +

π

2

)
||nε − n0||Y ∗ ||w||Yµ ,∥∥∥∥w ∫

R
v(z, x, y′)dy′

∥∥∥∥
Z
,

∥∥∥∥v ∫
R
w(z, x, y′)dy′

∥∥∥∥
Z
≤
(
C1KA +

π

2

)
||v||Yµ ||w||Yµ ,∥∥∥∥U(nε − n0)

∫
R
w(z, x, y′)dy′

∥∥∥∥
Z
≤ Kκ

(
C1KA +

π

2

)
||w||Yµ ||nε − n0||Yµ ,∥∥τU ′(nε − n0)

∥∥
Z ≤ CU |τ | ||n

ε − n0||Y ∗ .

Consequently, we have∥∥D(s,v)Gµ(ε, s, v)
∥∥ ≤ C

(
||nε − n0||Y ∗ + |ε|+ |ε|2 + |s|+ ||v||Yµ

)
,

where, crucially, C > 0 does not depend on µ. Fix now any ` > 0. Since ||nε − n0||Y ∗ −−−→
ε→0

0 from

Lemma 18, we may select 0 < r < ` small enough such that for all µ ∈ (0, µmax), we have

∀µ ∈ (0, µmax), min
(
|ε|, ||(s, v)||R×Sµ

)
≤ r =⇒

∥∥D(s,v)Gµ(ε, s, v)
∥∥ ≤ 1

2CL
. (142)

Then, using (87), we have

||Gµ(ε, 0, 0)||Z =

∥∥∥∥2U ′nεx + U(1− U)nε
∫
R

(nε − n0)(x, y′)dy′
∥∥∥∥
Z

≤ 2CUKσ||nε − n0||Y ∗ +
(
C1KA +

π

2

)
CU ||nε − n0||Y ∗ ,

and thus we may select 0 < ε0 < min(r, ε∗0) small enough such that

∀µ ∈ (0, µmax), ∀|ε| ≤ ε0, ||Gµ(ε, 0, 0)||Z ≤
1

2CL
r. (143)

Let Br =
{

(s, v) ∈ R× Sµ : ||(s, v)||R×Sµ ≤ r
}
be a closed subset of the Banach space R × Sµ. Note

that Gµ, D(s,v)Gµ are continuous at (0, 0). Then from Taylor’s theorem, (140) and (142), we have for
any |ε| < ε0 < r and (s, v), (s′, v′) ∈ Br,∥∥Tε,µ(s, v)− Tε,µ(s′, v′)

∥∥
R×Sµ ≤ ||(L

µ)−1||
∥∥Gµ(ε, s, v)− Gµ(ε, s′, v′)

∥∥
R×Sµ

≤ CL sup
0<ω<1

∥∥D(s,v)Gµ(ε, s+ ω(s′ − s), v + ω(v′ − v))
∥∥

× ||(s− s′, v − v′)||R×Sµ

≤ 1

2
||(s− s′, v − v′)||R×Sµ .
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Repeating this argument, along with (143), yields

‖Tε,µ(s, v)‖R×Sµ ≤ ||(L
µ)−1|| ‖Gµ(ε, s, v)− Gµ(ε, 0, 0)‖R×Sµ + ||(Lµ)−1|| ‖Gµ(ε, 0, 0)‖R×Sµ

≤ 1

2
||(s, v)||R×Sµ +

1

2
r ≤ r.

Consequently Tε,µ maps Br into itself and is contractive, thus by the fixed-point theorem it admits a
unique fixed point in Br. In conclusion, for any ` > 0, we can select 0 < ε0 < r < ` such that for each
|ε| < ε0 and µ ∈ (0, µmax), there exists a unique (sε,µ, vε,µ) ∈ Br satisfying Fµ(ε, sε,µ, vε,µ) = 0. Since
` > 0 was taken arbitrarily, we also have

sup
0<µ<µmax

||(sε,µ, vε,µ)||R×Sµ −−−→
ε→0

0. (144)

5.5 Letting the parameter µ tend to zero

Note that so far we only used the fact that β > 19
4 > 17

4 and γ > 3 > 2 at most. Since by assumption
β > 19

4 and γ > 3, we may redo the above proof by replacing Yµ,Z in (70) and (71) with

Ŷµ :=


v ∈ C3(R3)

∣∣∣∣∣∣∣∣∣∣∣∣∣

v(z, x+ L, y) = v(z, x, y), on R3,

∃C > 0, ∀|α| ≤ 3, |Dαv(z, x, y)| ≤ Ce−κ|z|

(1+y2)2
on R3,

∃K > 0, ∀n ∈ Z, ∀j ∈ N, ∀z ∈ R, there holds

|(vnj )(k)(z)| ≤ Ke−κ|z|

(1+j)β(1+|n|)γ ×
1+|n|k+jk/2

1+µn2+j+|n| , k ≤ 3


, (145)

and

Ẑ :=


f ∈ C1(R3)

∣∣∣∣∣∣∣∣∣∣∣∣

f(z, x+ L, y) = f(z, x, y), on R3,

∃C > 0, ∀|α| ≤ 1, |Dαf(z, x, y)| ≤ Ce−κ|z|

1+y2
on R3,

∃K > 0, ∀n ∈ Z, ∀j ∈ N, ∀z ∈ R, there holds

|(fnj )(k)(z)| ≤ Ke−κ|z|

(1+j)β(1+|n|)γ ×
(
1 + |n|k + jk/2

)
, k ≤ 1


, (146)

equipped with the respective norms

||v||Ŷµ =
∑
|α|≤3

[
sup

(z,x,y)∈R3

∣∣(1 + y2)2Dαv(z, x, y)
∣∣ eκ|z|]

+

3∑
k=0

sup
n∈Z,j∈N

[
(1 + j)β(1 + |n|)γ 1 + µn2 + j + |n|

1 + |n|k + jk/2
sup
z∈R

∣∣∣(wnj )(k)(z)eκ|z|
∣∣∣] ,

||f ||Ẑ =
∑
|α|≤1

[
sup

(z,x,y)∈R3

∣∣(1 + y2)Dαf(z, x, y)
∣∣ eκ|z|]

+
∑

k∈{0,1}

sup
n∈Z,j∈N

[
(1 + j)β(1 + |n|)γ

1 + |n|k + jk/2
sup
z∈R

∣∣∣(fnj )(k)(z)eκ|z|
∣∣∣] .

The proof in itself requires only slightly more precision, for example the Young inequality
√
j|n| ≤

2
3j

3/2 + 1
3 |n|

3, or the proof of (84)—(85) which requires to split the summation over m ∈ Z into m ≤ 0,
m ≥ n and 0 ≤ m ≤ n (assuming n ≥ 0). Details are omitted.

Let us fix |ε| < ε0. From subsections 5.1 to 5.4, for any µ ∈ (0, µmax), we are thus equipped with
(sε,µ, vε,µ) ∈ R× Ŷµ, with |sε,µ|, ||vε,µ||Yµ ≤ r where r does not depend on µ. Therefore there exists a
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sequence (µm)m∈N in (0, µmax) that tends to zero such that sε,µm −−−−−→
m→+∞

sε for some sε ∈ [−r, r]. On
the other hand, if we define for any k ∈ N,

Ckw,L(R3) :=
{
g ∈ Ckb (R3) : g(z, x+ L, y) = g(z, x, y) on R3, ||g||w,k <∞

}
,

w(z, y) := (1 + y2)2eκ|z|, ||g||w,k :=
k∑
|α|=0

sup
(z,x,y)∈R3

|w(z, y)Dαg(z, x, y)| ,

we see that ||vε,µm ||w,3 ≤ ||vε,µm ||Ŷµ ≤ r. We claim that a subsequence of (vε,µm)m∈N converges, as

m → +∞, to some vε ∈ C2
w0,L

(R3), with w0(z, x, y) := (1 + y2)e
κ
2
z. First, one can readily check that

C2
w0,L

(R3) is complete for || · ||w0,2. Then, because (vε,µm)m is bounded in C3
w,L(R3), for any δ > 0

there exist zδ, yδ ≥ 0 such that for all m,n ∈ N and |α| ≤ 2,

|(Dαvε,µm(z, x, y)−Dαvε,µn(z, x, y))w0(z, y)| ≤ δ, ∀|z| ≥ zδ, ∀|y| ≥ yδ, ∀x ∈ [0, L].

From there, redoing the proof of the Arzelà-Ascoli theorem, we prove that with another extraction
(µ′m)m∈N, we obtain for m,n large enough∣∣(Dαvε,µ′m(z, x, y)−Dαvε,µ′n(z, x, y)

)
w0(z, y)

∣∣ ≤ δ, ∀(z, x, y) ∈ [−zδ, zδ]× [0, L]× [−yδ, yδ].

Consequently the sequence vε,µ′m is uniformly Cauchy in C2
w0,L

(R3), thus convergent to some vε ∈
C2
w0,L

(R3).

Completion of the proof of Theorem 6. Let us fix |ε| ≤ ε0. By construction we have Fµ(ε, sε,µ′m , vε,µ′m) =
0 for all m ∈ N. Passing to the limit as m→ +∞, thanks to the dominated convergence theorem, we
obtain F(ε, sε, vε) = 0. As a result,

uε(z, x, y) = U(z)nε(x, y) + vε(z, x, y), z = x− (c0 + sε)t,

solves (5) by construction, and satisfies (17). Finally, from (144) combined with

||vε||w0,2 ≤ lim sup
m→+∞

||vε,µ′m ||w0,2 ≤ sup
m∈N
||vε,µ′m ||Yµ ,

we deduce that |sε|, ||vε||w0,2 → 0 as ε→ 0. This yields (18) with b = κ
2 > 0.

6 Insights of the results on the biological model

In this section, our goal is to discuss some biological implications of our mathematical analysis, com-
pleted by some numerical explorations, for a population facing a nonlinear environmental gradient.

Throughout this section, we assume θ ∈ Cb(R) and 0 < A < 1 so that λ0 < 0, meaning Theorems
3, 4 and 5 hold. Letting α :=

√
2A, (10), (11) and (12) are recast

nε(x, y) ≈ n0(y)

1 + εAρα ∗ θ(x)︸ ︷︷ ︸
deformation

y + · · ·

 , ρα(z) :=
1

2
αe−α|z|. (147)

In the following, we discuss two types of error between nε(x, y) and n0(y): firstly, the so-called relative
error, whose leading order term is Aρα ∗ θ(x) y =: D(x)y; secondly, the absolute error, whose leading
order term is given by D(x, y) := D(x)yn0(y).

We first present some general bounds on the two errors. Notice that ||D||L∞(R) ≤ A||θ||L∞(R),
meaning D(x) remains limited as A→ 0, and so does the relative error for bounded y. In other words,
the shape of populations “far from extinction” (A small) when ε = 0 is very robust: such species can
dampen the perturbation when |ε| 6= 0. As for D, thanks to (8), we can compute

‖D‖L∞(R2) = C(1−A)‖D‖L∞(R) ≤ CA(1−A)||θ||L∞(R), (148)
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for some universal constant C > 0. Note that, for any x, the maximum of |D(x, ·)| is attained at
y = ±A−1/2, independently of θ. From (148), the absolute error vanishes both far from extinction
(A → 0), and close to extinction (A → 1). In the latter case, this is because ||n0||L∞(R) itself goes to
zero, see (8).

In the sequel, we shall mostly discuss on D(x), which is tied to the relative error and which we call
the deformation. On the other hand, expansion (147) has the advantage to be uniform in y thanks to
(9) and (29), and our numerical explorations will therefore mainly focus on the absolute error D(x, y).

Example 25 (Test case). If θ ≡ 1, then (147) yields nε(x, y) ≈ n0(y) (1 + εAy + · · · ). On the other
hand, in view of equation (7), the solution is explicitly computed as (recall (8) and Proposition 8)

nε(x, y) = nε(y) = n0(y − ε) = ηC0e
− 1

2
A(y−ε)2 = n0(y)eεAy−ε

2 A
2 ≈ n0(y) (1 + εAy + · · · ) .

We thus recover that D(x) ≡ A.

6.1 Deformation of the steady state under localized perturbation

Example 26 (Localized prototype case). Consider θ(x) := 1(−`,`)(x), with ` > 0. This θ is not
continuous but we may consider a smooth compactly supported approximation so it does not matter
much for our discussion. From (14), the perturbation is localized so that we only consider |x| ≤ `

2 , for
which we compute

ρα ∗ θ(x) =
1

2

(∫ x

−`
αe−α(x−z)dz +

∫ `

x
αe−α(z−x)dz

)
= 1− e−α` cosh(αx).

In this case D(x) = A
(

1− e−
√

2A` cosh(
√

2Ax)
)
for |x| ≤ `

2 , and

CA,` := ‖D‖L∞(− `2 ,
`
2) = A

(
1− e−

√
2A`
)
.

For a given ` > 0, A 7→ CA,` is increasing on (0, 1), CA,` → 0 as A → 0, whereas CA,` → c` :=

1 − e−
√

2 ` as A → 1. We thus recover the fact that the population can dampen the perturbation “far
from extinction” (A small). On the other hand, populations “hardly surviving” (A close to 1) when
ε = 0 are more sensitive to the perturbation which they suffer with the coefficient c`. Notice that letting
`→ +∞ yields D(x)→ A and we naturally recover the above test case of Example 25.

Example 27 (“Dirac” case). Consider θ(x) = θh(x) := 1
2h1(−h,h)(x), with h > 0. Again, this θh is not

continuous, and since ‖θh‖L∞(R) → +∞ as h → 0, we expect that ε0 = ε0(h) provided by Theorem 3
satisfies ε0(h)→ 0 as h→ 0. Nevertheless, we formally obtain

D(x) = Dh(x)→ Aρα(x), as h→ 0.

Therefore, a large variation of the optimal trait on a very small spatial range (h → 0) induces a
deformation which is maximal at the singularity (here x = 0), and varies like A

3
2 .

6.2 Deformation of the steady state under periodic perturbation

Example 28 (Periodic prototype case). Consider θ(x) := sin(x` ), with ` > 0, which is L = 2π`-
periodic. Then

ρα ∗ θ(x) = Im

∫
R
ρα(x− z)ei

z
` dz = Im ei

x
` ρ̂α

(
1

`

)
=

`2α2

`2α2 + 1
sin
(x
`

)
. (149)

In this case

D(x) = CA,` θ(x), CA,` :=
2`2A2

2`2A+ 1
. (150)

Hence the deformation is proportional to the perturbation θ(x) itself. Also, for a given ` > 0, A 7→ CA,`
is increasing on (0, 1), CA,` → 0 as A → 0, whereas CA,` → c` := 2`2

2`2+1
as A → 1. We thus recover
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the fact that the population can dampen the perturbation “far from extinction” (A small). On the other
hand, populations “hardly surviving” (A close to 1) when ε = 0 are more sensitive to the perturbation
which they suffer with the coefficient c`. Notice also that c` → 0 as ` → 0 so that rapidly changing
environments are rather harmless (in the sense that the deformation is small). On the other hand,
c` → 1 as `→ +∞ meaning that, in slowly changing environments, populations hardly surviving when
ε = 0 fully suffer the perturbation.

Remark 29 (Influence of L). Since the deformation D(x) vanishes as A→ 0, let us assume here that
A ∈ (0, 1) is fixed. We also fix a 1-periodic profile θ̃(x) and set θL(x) := θ̃

(
x
L

)
. We shall highlight

how DL(x), the deformation corresponding to the perturbation θL(x), is affected by L. Firstly, DL is
obviously L-periodic. Then, we have

D̃L(x) := A−1DL(Lx) = (ρα ∗ θL)(Lx) = (ρα̃ ∗ θ̃)(x), α̃ := Lα = L
√

2A.

When L → 0, one can check that D̃L converges uniformly to Θ :=
∫ 1

0 θ̃(x)dx = 1
L

∫ L
0 θL(x)dx, so

that
DL(x)→ AΘ, uniformly as L→ 0.

Note that a deformation AΘ also corresponds to the deformation assuming θL(x) ≡ Θ, see Example
25. In other words, in a rapidly changing environment, the population is deformed as if the optimal
trait was uniformly equal to its average. In particular, if the average is zero, the steady state is not
distorted at first order.

On the other hand, as L→ +∞, ρα̃ serves as an approximation of identity and ||D̃L−θ̃||L∞(R) → 0,
so that

‖DL −AθL‖L∞(R) → 0, as L→ +∞.

Consequently, the deformation is directly proportional to the optimal trait, meaning the population fully
suffers from the perturbation. Note that, since θ̃ is continuous, the profile θL(x) = θ̃

(
x
L

)
flattens as

L→ +∞. In particular, in the above limit, we could have replaced θL by x 7→ 1
2p

∫ x+p
x−p θL(z)dz for any

fixed p > 0.

We now present some numerics for the periodic prototype case of Example 28. As mentioned above,
we are mainly concerned with the absolute error

Eε(x, y) := nε(x, y)− n0(y) = εD(x, y) + o(ε). (151)

To compute nε(x, y) numerically, we consider the Cauchy problem with initial data n0(y), and retain
the asymptotics t→ +∞. The steady state nε(x, y) being unique in a neighborhood of n0(y), one can
reasonably assume such an asymptotic state to be nε(x, y). This is confirmed by comparing with the
expected theoretical result from Theorem 3, see Figures 1 and 2.

Remark 30 (Absolute error vs. population distribution). In Figure 1 (and the ones that follow), we
represent θ(x) with a solid, black line. Notice however that this does not correspond to the optimal trait
at position x, given by εθ(x) and represented with a dotted line in Figure 1.

The maximum of the absolute error |D| occurs in positions x such that |D(x)| is maximal and with
trait y = ±yA := ±A−1/2, as mentioned above. As a consequence, at first order, the maximum of D
occurs at traits y = ±yA that do not depend on θ, thus independently of the optimal traits. On the
other hand, the positions x where that maximum is attained directly depends on θ through D(x).

Let us underline that this observation concerns the absolute error Eε(x, y), but not the population
distribution nε(x, y) itself. For the latter, we observe numerically that its maximum remains close to
y = 0, for |ε| small enough. Moreover, thanks to (9) and (29), we have

‖nε − n0 − εD(x)yn0(y)‖Y = o(ε), as ε→ 0,

so that, keeping only the term corresponding to the index Dα = Dy in (31), and looking at y = 0, we
obtain

|nεy(x, 0)− εD(x)n0(0)| = o(ε), as ε→ 0.
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Figure 1: Left: absolute error Eε(x, y) = nε(x, y) − n0(y), where nε(x, y) is determined numerically.
Right: theoretical absolute error εD(x, y). In black, the function θ(x) = sin(2πx), i.e. L = 1. In
dotted line, the optimal trait εθ(x). Here A = 0.9 and ε = 10−4.

Consequently, for positions x such that D(x) 6= 0, we see that, for |ε| small enough, nεy(x, 0) is non-zero
and has same (opposite) sign as D(x) when ε > 0 (ε < 0 respectively). In particular, the maximum of
nε(x, y) is not attained for traits y = 0. For those x, the maximum of the population size is typically
shifted towards the optimal trait. Note that this also applies for non-periodic profile θ.

Figure 2: Left: absolute error Eε(x, y) = nε(x, y) − n0(y), where nε(x, y) is determined numerically.
Right: theoretical absolute error εD(x, y). In black, the function θ(x) = sin(4πx), i.e. L = 0.5. Here
A = 0.9 and ε = 10−4.

Let us pursue with a few comments. Firstly, the error is small near y = 0 since D(x, 0) = 0. Also,
we see that Eε(x, y) has same sign as yθ(x), since here D(x, y) = D(x)yn0(y) = CA,`θ(x)yn0(y). It
can be checked that ‖Eε− εD‖L∞(R2) decays numerically like O(ε2) as ε→ 0. Let us recall that, from
(148),

‖D‖L∞(R2) = C(1−A)CA,` = C(1−A)
2`2A2

2`2A+ 1
,

for some universal C > 0. Therefore at first order, we expect Eεmax := ‖Eε‖L∞(R2) to be increasing
with `, which is highlighted by a comparison of Figures 1 and 2 (notice the different scales). More
generally, ‖D‖L∞(R2) is “maximal” for `→ +∞, A = 1

2 .
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Last, we also inquire about the numerical relative error. We refer to Figure 3. We have also
computed the relative errors for A ∈ {0.8, 0.9} and L ∈ {0.5, 1}. We observed that the numerical
outcomes are in agreement with the results discussed in Example 28.

Figure 3: Left: relative error nε(x,y)−n0(y)
n0(y)

, where nε(x, y) is determined numerically. Right: theoretical

relative error εD(x,y)
n0(y)

. Here A = 0.9, ε = 10−4 and θ(x) = sin(2πx), i.e. L = 1.

Example 31 (Influence of skewness). We here perform numerical simulations in the 1-periodic step
function case

θ(x) =

{
+1 if x ∈

(
0, a2
)
∪
(
1− a

2 , 1
)
,

−1 if x ∈
(
a
2 , 1−

a
2

)
,

(152)

where 0 < a < 1 serves as a parameter which measures the asymmetry, or skewness, of the perturbation.
Indeed, the optimal trait takes the values y = +ε and y = −ε with proportions (over a period) a and
1− a respectively.

In the balanced case a = 1
2 , the steady state is symmetrically distorted and, therefore, the location

of the maximal absolute error switches between y = 1√
A

and y = − 1√
A
, see Figure 4.

Figure 4: Left: Eε(x, y) = nε(x, y)−n0(y), where nε(x, y) is determined numerically. Right: theoretical
εD(x, y). In black, the 1-periodic function θ given by (152) with a = 0.5. Here A = 0.9 and ε = 10−4.

On the other hand, when a → 1 (the a → 0 case being similar), the +ε optimum is much more
prevalent and, therefore, there is no switch of the maximal absolute error, and the population leans to
the upper side, see Figure 5 for a = 0.8. In other words, there is little advantage for the population to
invest on displacements to visit the lower side.
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Figure 5: Left: Eε(x, y) = nε(x, y)−n0(y), where nε(x, y) is determined numerically. Right: theoretical
εD(x, y). In black, the 1-periodic function θ given by (152) with a = 0.8. Here A = 0.9 and ε = 10−4.

Last, we consider an intermediate case: Figure 6, for a = 0.52, reveals that the population suffers
less from the perturbation at positions x where the optimal trait is y = −ε than at other positions.

Figure 6: Left: Eε(x, y) = nε(x, y)−n0(y), where nε(x, y) is determined numerically. Right: theoretical
εD(x, y). In black, the 1-periodic function θ given by (152) with a = 0.52. Here A = 0.9 and ε = 10−4.

It is worth mentioning that Figures 4 to 6 highlight that the maximum absolute error increases
(notice the different scales) with

∣∣a− 1
2

∣∣ (i.e. the aforementioned skewness).
These remarks are consistent with the fact that the absolute error is D(x)yn0(y) = (ρα∗θ)(x)yn0(y).

Indeed, in order to have a positive absolute error at the lower side of position x, one must have
D(x) < 0. In the balanced case, one obviously has D(x) < 0 for all x ∈ (0.25, 0.75), and |D(x)| is
maximal at x = 0.5. When a = 0.8, we have D(x) ≥ D(0.5) > 0, so that the population always leans
towards the upper side, albeit slightly less in x = 0.5.

In fact, for any fixed α =
√

2A, one can explicitly compute the value a = aα such that D(0.5) = 0.
We omit the details (tedious but straightforward cutting of the integral accordingly to the step function,
computation of an infinite series and solving of a quadratic equation) and find

aα =
2

α
ln

(
4

e−α − 1 +
√

(e−α − 1)2 + 16e−α

)
− 1.

Then for any a > aα, we have D(x) ≥ D(0.5) > 0, so that the population leans to the upper side
everywhere. For A = 0.9, we have aα ≈ 0.5273, hence our choice of a = 0.52 for the intermediate case.
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6.3 Deformation of the speed and profile of the front under periodic perturbation

Here, we formally reproduce the arguments of subsection 4.3 (performed to analyse the perturbation
of the steady state) to analyse the perturbation of the pulsating front constructed through Section 5,
to which we refer for notations and definitions. We differentiate Fµ(ε, sε, vε) = 0 with respect to ε
thanks to the chain rule and then evaluate at ε = 0 to get

DεFµ(0, 0, 0) + Lµ
(
∂sε,µ
∂ε

∣∣∣∣
ε=0

,
∂vε,µ
∂ε

∣∣∣∣
ε=0

)
= 0.

From the expression of DεFµ = DεFµ(ε, s, v) and

nε(x, y) = n0(y) + εn1(x, y) + o(ε) in Y, as ε→ 0,

we compute

f(z, x, y) := DεFµ(0, 0, 0) = 2U ′(z)n1
x(x, y) + U(z)(1− U(z))n0(y)

∫
R
n1(x, y′)dy′ = 2U ′(z)n1

x(x, y),

since we know from Theorem 3 that n1(x, y) is odd with respect to y. From the above and (11), we
reach (

∂sε,µ
∂ε

∣∣∣∣
ε=0

,
∂vε,µ
∂ε

∣∣∣∣
ε=0

)
= (Lµ)−1(f) = (Lµ)−1

(√
2AηU ′(z)(ρA ∗ θ)′(x)Γ1(y)

)
.

Projecting on (Γj) we thus have fj(z, x) =
√

2AηU ′(z)(ρA ∗ θ)′(x) δj,1, where we use the Kronecker
symbol. Now, the key point is that 1

L

∫ L
0 (ρA ∗ θ)′(x) dx = 0 so that the Fourier coefficient f0

1 (z) ≡ 0.
As a result, recalling (133), Φf (z) ≡ 0 so that s = 0, where s is given by (135). In our setting, the
latter is recast ∂sε,µ

∂ε

∣∣∣
ε=0

= 0. Formally letting µ→ 0, this provides sε = o(ε) and, thus, (19).
As explained above, (19) means that the perturbation of the speed of the front by the nonlinearity

θ = θ(x) is of the second order with respect to ε. As far as the distortion of the profile of the front itself
is involved, we focus on the following example which sheds light on the amplitude of the deformation.

Example 32 (Amplitude of the deformation of the profile). Here, following Example 28, we consider
θ(x) := sin

(
x
`

)
, with ` > 0, which is L = 2π`-periodic. As a result, recalling (11), (12) and (149), we

reach

f(z, x, y) = U ′(z)
`α4

`2α2 + 1
cos
(x
`

)
yn0(y) = U ′(z)

`α3η

`2α2 + 1
cos
(x
`

)
Γ1(y),

where, as above, we use the shortcut α =
√

2A. Projecting on (Γj), we get

fj(z, x) = U ′(z)
`α3η

`2α2 + 1
cos
(x
`

)
δj,1 ,

whose Fourier coefficients are

fnj (z) = U ′(z)
`α3η

2(`2α2 + 1)
δ|n|,1 δj,1 =: CηU ′(z) δ|n|,1 δj,1 ,

and where

C = CA,` :=
`A
√

2A

2`2A+ 1
. (153)

In other words f1
1 (z) = f−1

1 (z) = CηU ′(z) and all other coefficients vanish. As a result, the profile of
the pulsating front is described by

uε(z, x, y) ≈ U(z)nε(x, y) + ε
(
v−1

1 (z)e−1(x) + v1
1(z)e1(x)

)
Γ1(y) + · · · ,

where E±1,1,µ[v±1
1 ] = f±1

1 (z) = CηU ′(z), see (100). Clearly, we have v1
1 = v−1

1 so that

uε(z, x, y) ≈ U(z)nε(x, y) + ε 2 Re
(
v1

1(z)e1(x)
)

Γ1(y) + · · ·

≈ U(z)n0(y)
(

1 + εCA,`θ(x)y + ε 2
Re
(
v1

1(z)e1(x)
)

ηU(z)

√
2Ay + · · ·

)
.
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Here we have used Example 28, in particular CA,` is given by (150). Next, since `
√

2A CA,` = CA,`, we
end up with

uε(z, x, y) ≈ U(z)n0(y)

1 + εCA,`

θ(x) + 2
Re
(
L−1

1,1,µ[U ′](z)e1(x)
)

`U(z)

 y + · · ·

 . (154)

At this stage, since the term w(z) := L−1
1,1,µ[U ′](z) also depends on A and `, the amplitude of (the

leading order term of) the deformation of the profile of the front is not transparent. Nevertheless we
can formally obtain some clues in some asymptotic regimes. Recall that, up to letting µ→ 0, w solves

w′′ +

(
2i

`
+ c0

)
w′ −

(
λ1 − λ0U(z) +

1

`2

)
w = U ′(z). (155)

Letting ` → 0, (155) formally provides w(z) ∼ −`2U ′(z) so that Re (w(z)e1(x))
`U(z) is of “magnitude `”,

and thus uε(z, x, y) ≈ U(z)n0(y) (1 + εCA,`θ(x)y + · · · ). On the other hand, letting ` → +∞, (155)
formally shows that w(z) is independent on ` so that Re (w(z)e1(x))

`U(z) is of “magnitude 1/`” and thus,
again, uε(z, x, y) ≈ U(z)n0(y) (1 + εCA,`θ(x)y + · · · ). As a result, at least in any of the asymptotic
regimes `→ 0, `→ +∞, the amplitude of (the leading order term of) the deformation of the profile of
the front is again measured by CA,`, so that the biological insights are similar to those of Example 28.

On the other hand, letting A→ 0 or A→ 1, w(z) formally becomes independent on A and thus

uε(z, x, y) ≈ U(z)n0(y)
(

1 + εCA,`(θ(x) + Ψ`(z, x))y + · · ·
)
,

so that an additional deformation term, denoted Ψ`(z, x), is involved.

6.4 Numerical support for some conjectures on the pulsating fronts

As mentioned after Theorem 6, the positivity of the pulsating front uε(z, x, y) is not provided by our
proof. We nonetheless provide some numerical explorations for the front that, in particular, support
its positivity. This task is not straightforward since the first-order term of expansion (154) is not
explicit, contrary to the steady state case. Thus we cannot directly compare our numerical front with
a theoretical one.

In this subsection, to improve clarity, we consider the front uε in the (t, x, y) variables instead of
the (z = x− cεt, x, y) variables. From (154), and because cε = c0 + o(ε), we have

uε(t, x, y) ≈ U(x− c0t)n
0(y)

(
1 + ε

(
CA,`θ(x)y + Ψ`(x− c0t, x)y

)
+ . . .

)
.

Our approach consists in choosing the “explicit part” of the above expansion, that is

Ū(t, x, y) := U(x− c0t)n
0(y)

(
1 + εCA,`θ(x)y

)
,

as the “theoretical front”. Notice also that, since Ψ` → 0 formally as `→ 0 or `→ +∞ (see the end of
subsection 6.3), we expect uε ≈ Ū in those regimes.

Let us recall that U is the Fisher–KPP front that solves (16), with c0 ≥ c∗0 := 2
√
−λ0. For the sake

of comparison, we shall consider here c0 = 5
√
−λ0

6 , for which the Fisher–KPP front U , normalized by
U(0) = 1

2 , is explicitly known:

U(z) =

(
1 + (

√
2− 1) exp

(√
−λ0

6
z

))−2

.

Equipped with the above, we now present our numerical computations, see Figure 7. We first observe
that we numerically have uε > 0. Also, we check that uε = uε(t, x, y) is indeed a perturbation of
u0(t, x, y) = U(x− c0t)n

0(y), with the absolute error being maximal at the front, leading to a maximal
relative error of order similar to ε = 10−4.
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Figure 7: Top left: the front uε(t = 100, ·, ·) determined numerically. Top right: the error uε − u0

at t = 100. Bottom left and right: the same error but with a zoom in on the x-direction. Here
θ(x) = sin(2πx), A = 0.9 and ε = 10−4. The initial data is U(x)n0(y), which, when ε = 0, yields to a

“classical” traveling wave solution of speed c0 = 5
√
−λ0

6 ≈ 0.65.

However, we notice from Figure 7 that the function uε − u0 presents some small variations behind
the front. As long as we look “far” behind the front, the error uε − u0 presents patterns similar, both
qualitatively and quantitatively, to Figure 1, which is concerned with the steady state. On the other
hand, when looking around the front, we observe that those oscillations disappear. Figure 7 thus
suggests that Ū may be a better approximation of uε than u0. The next step is then to compare uε

and Ū , see Figure 8. We see that the small variations behind the front have disappeared, meaning
that, at these positions, Ū is a better approximation of uε than u0. Yet, the front location of uε, who
spreads at speed cε, is slightly behind those of u0 and Ū , which spread at speed c0. This supports the
conjecture that cε < c0.

Another natural question is whether or not the numerical solution uε is indeed a pulsating front,
and if so to determine its propagation speed. The pulsating nature is hard to capture since, on the one
hand, there is “a mix of spatial and temporal periodicity” and, on the other hand, those periods depend
on cε, which is unknown. Nonetheless, from Figure 8, we see that uε is very close to the pulsating
front Ū apart from positions x around the front. This remains true over a period of time of Ū , which
provides a partial answer to the pulsating nature. As for the perturbed speed cε, it seems impossible
to approximate numerically, since we expect cε− c0 to be of order ε2, and thus the higher-order terms
in (154) should be involved in the calculation.

A Appendix

A.1 Proof of Lemma 20

We first need to construct solutions of (104) on R− and R+. The proof mainly consists in rewriting the
ordinary differential equation (104) as a fixed point problem, and then to perform careful estimates by
considering separately large values of min(|n|, j) from bounded values of min(|n|, j).
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Figure 8: The error uε − Ū at t = 100, for different ranges of x. The conditions are the same as in
Figure 7.

Lemma 33 (Fundamental system of (104) on R− and R+). Let (n, j) ∈ Z×N with (n, j) 6= (0, 0), and
0 ≤ µ < 1. On R−, we can construct a system of fundamental solutions (ϕ̃−, ϕ̃+) of (104), such that

ϕ̃±(z) = P̃±(z)ea
±
n,j,µz, P̃± ∈ C2

b (R−,C), lim inf
z→−∞

∣∣∣P̃−(z)
∣∣∣ > 0, (156)

with a±n,j,µ given by (107). On R+, we can construct a system of fundamental solutions (ψ̃−, ψ̃+) of
(104) such that

ψ̃±(z) = Q̃±(z)eb
±
n,j,µz, Q̃± ∈ C2

b (R+,C), lim inf
z→+∞

∣∣∣Q̃+(z)
∣∣∣ > 0, (157)

with b±n,j,µ given by (108). Also, there is R̃max > 0 such that

sup
(n,j)6=(0,0)

sup
0≤µ<1

sup
R̃∈{P̃±,Q̃±}

(
||R̃||L∞ + ||R̃′||L∞

)
≤ R̃max, (158)

where by convention the sup norm is taken over the domain of definition of R̃.
Additionally, there exist n0, j0 > 0 such that if |n| ≥ n0 or j ≥ j0, there holds for all 0 ≤ µ < 1,∣∣∣P̃+(0)− 1

∣∣∣ , ∣∣∣Q̃−(0)− 1
∣∣∣ ≤ 1

2
, P̃−(0) = Q̃+(0) = 1, (159)∣∣∣P̃ ′+(0)

∣∣∣ , ∣∣∣Q̃′−(0)
∣∣∣ ≤ 1, P̃ ′−(0) = Q̃′+(0) = 0. (160)

Besides, denoting P̃± = P̃n,j,µ± and Q̃± = Q̃n,j,µ± , we have for any N0, J0 > 0

sup
|n|≤N0,j≤J0
(n,j)6=(0,0)

sup
R̃∈{P̃±,Q̃±}

(∣∣∣R̃n,j,µ(0)− R̃n,j,0(0)
∣∣∣+

∣∣∣∣(R̃n,j,µ)′ (0)−
(
R̃n,j,0

)′
(0)

∣∣∣∣) −−−→µ→0
0. (161)

Next, by taking µ̃max > 0 small enough, there exists Wmin > 0 such that for all (n, j) 6= (0, 0) and
0 ≤ µ < µ̃max, the Wronskians of (ϕ̃−, ϕ̃+) and (ψ̃−, ψ̃+) in zero satisfy:|Wϕ̃| :=

∣∣[ϕ̃′−ϕ̃+ − ϕ̃′+ϕ̃−
]

(0)
∣∣ ≥Wmin,∣∣∣Wψ̃

∣∣∣ :=
∣∣∣[ψ̃′−ψ̃+ − ψ̃′+ψ̃−

]
(0)
∣∣∣ ≥Wmin,

(162)

and if |n| ≥ n0 or j ≥ j0, we have as well

|Wϕ̃| ≥
1

4

∣∣∣a+
n,j,µ − a

−
n,j,µ

∣∣∣+ 1,
∣∣∣Wψ̃

∣∣∣ ≥ 1

4

∣∣∣b+n,j,µ − b−n,j,µ∣∣∣+ 1. (163)

Furthermore, there exist ζ1, ζ2 > 0 such that for all (n, j) 6= (0, 0) and 0 ≤ µ < µ̃max∫ 0

−∞
|ϕ̃+(z)|2dz ≥ ζ1e

−ζ2 Re a+n,j,µ . (164)
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Proof. In the context of this proof, we always assume (n, j) 6= (0, 0). Also, for the sake of readability,
we drop the “tilde” notations for ϕ̃, ψ̃, P̃ , Q̃ and denote a±n,j,µ = a±, b±n,j,µ = b±. We first construct the
solutions ϕ±. Let us fix n, j and 0 ≤ µ < 1. We only treat the case j ≥ 1, the proof for j = 0 being
similar. Set ϕ±(z) = P±(z)ea

±z where P± ∈ C2
b (R−,C) is to be determined. Plugging it into (104),

we obtain
P ′′± ± rP ′± − λ0(1− U(z))P± = 0, (165)

where r := 2a+ + 2inσ + c0 = a+ − a−, so that Re r > 0 from (111).
Let us first construct ϕ+. Using a Sturm-Liouville approach, we may recast (165) as

(P ′+e
rz)′ − λ0(1− U(z))P+e

rz = 0,

so that, assuming P ′+(−∞) = 0, we obtain after integration on (−∞, z),

P ′+(z) = λ0

∫ z

−∞
er(ω−z)(1− U(ω))P+(ω)dω, (166)

and thus, assuming P+(−∞) = 1, after another integration and a ,

P+(z) = 1− λ0

∫ z

−∞

er(ω−z) − 1

r
(1− U(ω))P+(ω)dω. (167)

Hence, P+ is written as the solution of a fixed-point problem. Since 1 − U ∈ L1(R−), for a given
z0 ≤ 0, the operator in the right-hand side of (167) is globally Lipschitz continuous on Cb ((−∞, z0],C)
with Lipschitz constant 2

∣∣λ0r
−1
∣∣ ∫ z0
−∞(1 − U(ω))dω. Hence, for |z0| large enough, the fixed-point

theorem yields the existence and uniqueness of a solution P+ ∈ Cb ((−∞, z0],C) to the problem (167).
One can readily check that P+ indeed solves (165) and belongs to C2

b ((−∞, z0],C). We extend it
to R− by solving the Cauchy problem associated to (165). We have therefore constructed a function
ϕ+(z) = P+(z)ea

+z that solves (104).
We now construct ϕ−. We can repeat the same procedure, and obtain that ϕ−(z) = P−(z)ea

−z

solves (104) if and only if P− satisfies

(P ′−e
−rz)′ − λ0(1− U(z))P−e

−rz = 0.

By integrating on [z, z0] instead of (−∞, z], and assuming P ′−(z0) = 0, P−(z0) = 1, we deduce succes-
sively that

P ′−(z) = −λ0

∫ z0

z
e−r(ω−z)(1− U(ω))P−(ω)dω, (168)

P−(z) = 1 + λ0

∫ z0

z

1− e−r(ω−z)

r
(1− U(ω))P−(ω)dω, (169)

so that P− solves a fixed-point problem. Assuming |z0| large enough, there exists a unique solution P− ∈
Cb ((−∞, z0],C) by the fixed-point theorem. One can then readily check that P− ∈ C2

b ((−∞, z0],C),
and after extending it to R− by solving the Cauchy problem associated to (165), we obtain another
solution ϕ−(z) = P−(z)ea

−z of (104) on R−. Finally, the solutions (ϕ−, ϕ+) are linearly independent
since Re a+ 6= Re a−.

We shall now prove that there exist n0, j0 > 0 such that P± satisfy (159)—(160) when |n| ≥ n0 or
j ≥ j0. Also, for those indexes n, j, we shall prove that P± satisfy (156) and (158). Here we denote
r = rn,j,µ. Since (113) and (115) hold, there exist n0, j0 > 0 such that if |n| ≥ n0 or j ≥ j0, we have

|rn,j,µ| ≥ 8,
|λ0|

Re rn,j,µ
≤ 2

3
,

∣∣∣∣ λ0

rn,j,µ

∣∣∣∣ ∫ 0

−∞
(1− U(ω))dω ≤ 1

6
, ∀µ ∈ [0, 1). (170)

Let us assume that |n| ≥ n0 or j ≥ j0. Then (167) and (169) hold for any z ≤ z0 = 0, independently
of 0 ≤ µ < 1. Therefore P−(0) = 1, P ′−(0) = 0 and

||P±||C0
b (R−) ≤ 1 +

(
2

∣∣∣∣ λ0

rn,j,µ

∣∣∣∣ ∫ 0

−∞
(1− U(ω))dω

)
||P±||C0

b (R−) ≤ 1 +
1

3
||P±||C0

b (R−),
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and thus ||P±||C0
b (R−) ≤ 3

2 . Combining this bound with (166)— (170), we deduce on the one hand,

||P± − 1||C0
b (R−) ≤ 2

∣∣∣∣ λ0

rn,j,µ

∣∣∣∣ ||P±||C0
b (R−)

∫ 0

−∞
(1− U(ω))dω ≤ 1

2
,

and on the other hand,

||P ′±||C0
b (R−) ≤ |λ0|

∫ 0

−∞
eωRe rn,j,µ(1− U(ω)) |P±(ω)| dω ≤ 3 |λ0|

2 Re rn,j,µ
≤ 1.

In conclusion, assuming |n| ≥ n0 or j ≥ j0, P± satisfy (156) and (158)—(160) with R̃max = 5
2 .

Let us now fix n, j such that |n| ≤ n0 and j ≤ j0. We shall prove that, up to taking R̃max possibly
larger, P± satisfy (156) and (158). Note that

|rn,j,µ| ≤ |rn0,j0,1| =: rmax > 0,

while we also have, since (n, j) 6= (0, 0),

|rn,j,µ| ≥ Re rn,j,µ ≥ inf
(n,j)6=(0,0)

Re rn,j,0 ≥ min(Re r1,0,0, r0,1,0) =: rmin > 0. (171)

We now select z0 ≤ 0 independent of n, j, µ such that

|λ0|
∫ z0

−∞
(1− U(ω))dω ≤ min

(
2

3
,
rmin

6

)
, (172)

and thus (167) and (169) hold for any z ≤ z0. Similarly as above, we deduce

||P± − 1||C0
b ((−∞,z0)) ≤

1

2
, ||P ′±||C0

b ((−∞,z0)) ≤ 1. (173)

From there, we recall that the functions P± are extended to R− by solving the Cauchy problem
associated to (165), which we recast

Y ′± = A±(z)Y±, Y± =

(
P±
P ′±

)
, A±(z) =

(
0 1

∓rn,j,µ λ0(1− U(z))

)
.

If we denote || · ||∞ both the supremum norm on C2 and its associated subordinate norm on M2(C),
we thus obtain

||Y ′±(z)||∞ ≤ ||A±(z)||∞||Y±(z)||∞ ≤M ||Y±(z)||∞, M :=

∥∥∥∥( 0 1
rmax |λ0|

)∥∥∥∥
∞
.

Using the Gronwall’s Lemma, this leads to, for all z0 ≤ z ≤ 0:

||Y±(z)||∞ ≤ ||Y±(z0)||∞eM(z−z0) ≤ 3

2
eM |z0|, ∀|n| ≤ n0, ∀j ≤ j0, ∀µ ∈ [0, 1).

In conclusion, combining this paragraph and the previous one, we deduce that P± satisfy (156) and
(158) for R̃max = max

(
5
2 ,

3
2e
M |z0|

)
. Note that n0, j0, z0 do not depend on µ, so that this is also the

case for R̃max.
Let us prove that Wϕ̃ satisfies (163). Given that

Wϕ̃ =
[
(a− − a+)P+P− + P ′−P+ − P ′+P−

]
(0), (174)

and using (159)—(160) with (170), we have, for all 0 ≤ µ < 1,

|Wϕ̃| ≥
1

2

∣∣a+ − a−
∣∣− 1 ≥ 1

4
|a+ − a−|+ 1, if |n| ≥ n0 or j ≥ j0,

so that (163) holds.
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We now fix N0, J0 > 0 and show that P± satisfies (161). We first consider fixed indexes |n| < n0

and j < j0. Let us recall that for those n, j we selected z0 ≤ 0 such that (172) holds for all 0 ≤ µ < 1,
which means (167) and (169) hold for any z ≤ z0. To begin with, we first prove that

sup
|n|≤n0,j≤j0

(∣∣∣Pn,j,µ± (z0)− Pn,j,0± (z0)
∣∣∣+

∣∣∣∣(Pn,j,µ±

)′
(z0)−

(
Pn,j,0±

)′
(z0)

∣∣∣∣) −−−→µ→0
0, (175)

where we denoted P± = Pn,j,µ± . Let us mention that P− satisfies (175) since by construction Pn,j,µ− (z0) =

1 and (Pn,j,µ− )′(z0) = 0 for all 0 ≤ µ < 1. It thus suffices to show that Pn,j,µ+ satisfies (175). Fix ε > 0.
We set

gn,j,µ(z) :=
ern,j,µz − 1

rn,j,µ
, 0 ≤ µ < 1, z ≤ 0.

Note that, due to (171), we have ||gn,j,µ||∞ ≤ 2
rmin

. Also, we fix zε ≤ z0 such that
∫ zε
−∞(1−U(ω))dω ≤ ε.

Consequently, we have for all z ≤ z0∣∣∣Pn,j,µ+ (z)− Pn,j,0+ (z)
∣∣∣ ≤ |λ0|

∣∣∣∣∫ zε

−∞
[(gn,j,µ − gn,j,0)(ω − z)] (1− U(ω))Pn,j,µ+ (ω)dω

∣∣∣∣
+ |λ0|

∣∣∣∣∫ z

zε

[(gn,j,µ − gn,j,0)(ω − z)] (1− U(ω))Pn,j,µ+ (ω)dω

∣∣∣∣1(zε,z0](z)

+ |λ0|
∣∣∣∣∫ z

−∞
gn,j,0(ω − z)(1− U(ω))

[
Pn,j,µ+ (ω)− Pn,j,0+ (ω)

]
dω

∣∣∣∣
≤ 2ε |λ0| ||gn,j,µ||∞||Pn,j,µ+ ||L∞(R−)

+ |λ0| ||Pn,j,µ+ ||L∞(R−) sup
zε≤ω≤0

|(gn,j,µ − gn,j,0)(ω)|
∫ 0

−∞
(1− U(ω))dω

+ |λ0| ||gn,j,0||∞
∫ z

−∞
(1− U(ω))

∣∣∣Pn,j,µ+ (ω)− Pn,j,0+ (ω)
∣∣∣ dω.

Also, one can readily check that

sup
|n|<n0,j<j0

sup
zε≤ω≤0

|(gn,j,µ − gn,j,0)(ω)| −−−→
µ→0

0.

Therefore there exists µε > 0 such that for any |n| < n0, j < j0, 0 ≤ µ ≤ µε and z ≤ z0, there holds∣∣∣Pn,j,µ+ (z)− Pn,j,0+ (z)
∣∣∣ ≤ Cε+D

∫ z

−∞
(1− U(ω))

∣∣∣Pn,j,µ+ (ω)− Pn,j,0+ (ω)
∣∣∣ dω,

C := |λ0| R̃max
(

4

rmin
+

∫ 0

−∞
(1− U(ω))dω

)
> 0, D :=

2 |λ0|
rmin

> 0.

From the Gronwall’s Lemma, we obtain∣∣∣Pn,j,µ+ (z)− Pn,j,0+ (z)
∣∣∣ ≤ Cε exp

(
D

∫ 0

−∞
(1− U(ω))dω

)
.

Since ε is arbitrary, we see that
∣∣∣Pn,j,µ+ (z0)− Pn,j,0+ (z0)

∣∣∣ → 0 as µ → 0 uniformly in |n| < n0 and

j < j0. The proof for (Pn,j,µ+ )′ is similar and is thus omitted. Therefore (175) holds. We are now
ready to prove (161) for indexes |n| < n0 and j < j0. Let us recall that Pn,j,µ± is extended to R− by
solving the Cauchy problem associated to (165) with initial data taken at z = z0. Because z0 does not
depend on µ, we deduce from classical results of ODEs and continuous dependency of the solutions
with respect to the parameter µ, that

sup
|n|≤n0,j≤j0

(∣∣∣Pn,j,µ± (0)− Pn,j,0± (0)
∣∣∣+

∣∣∣∣(Pn,j,µ±

)′
(0)−

(
Pn,j,0±

)′
(0)

∣∣∣∣) −−−→µ→0
0.
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We now consider indexes (n, j) such that n0 ≤ |n| ≤ N0 or j0 ≤ j ≤ J0, assuming N0 ≥ n0 or J0 ≥ j0.
Let us recall that for such indexes, (170) holds for all 0 ≤ µ < 1, which means (167) and (169) hold for
any z ≤ 0. Then using the same arguments, we have that (175) holds where (n0, j0, z0) are replaced
by (N0, J0, 0), and thus Pn,j,µ± satisfies (161).

We are now ready to prove (162). We first consider fixed indexes |n| ≤ n0 and j ≤ j0. Then one
can readily check that

sup
|n|≤n0,j≤j0

|a±n,j,µ − a
±
n,j,0| −−−→µ→0

0.

Since (161) holds with (N0, J0) = (n0, j0), we deduce from (174) that

sup
|n|≤n0,j≤j0

∣∣∣Wn,j,µ
ϕ̃ −Wn,j,0

ϕ̃

∣∣∣ −−−→
µ→0

0,

where we denoted Wϕ̃ = Wn,j,µ
ϕ̃ . We have Wn,j,0

ϕ̃ 6= 0 for all n, j, since it is the Wronskian of (ϕ−, ϕ+)

when µ = 0. Therefore there exists m > 0 such that inf |n|≤n0,j≤j0

∣∣∣Wn,j,0
ϕ̃

∣∣∣ ≥ m. Thus taking µ̃max > 0

small enough, we obtain for any 0 ≤ µ < µ̃max

inf
|n|≤n0,j≤j0

∣∣∣Wn,j,µ
ϕ̃

∣∣∣ ≥ m

2
.

Combining this with (163), we obtain (162) with Wmin := min
(
1, m2

)
.

Finally, let us prove (164). Let us consider indexes (n, j) such that |n| ≥ n0 or j ≥ j0. Then
|P+(0)| ≥ 1

2 from (159). Set ρ = (4R̃max)−1 > 0. Then by the mean value inequality we have for all
µ ∈ [0, 1)∫ 0

−∞
|ϕ+(z)|2 dz ≥

∫ 0

−ρ
|P+(z)|2 e2 Re a+zdz ≥

(
1

2
− R̃maxρ

)2 ∫ 0

−ρ
e2 Re a+zdz ≥ ρ

16
e−2 Re a+ρ.

Let us now assume that |n| ≤ n0 and j ≤ j0. Then from (173) we have |P+(z0)| ≥ 1
2 , with z0 ≤ 0

independent of n, j, µ, see (172). Redoing the same calculations with
∫ 0
−ρ being replaced by

∫ z0
z0−ρ, we

obtain ∫ 0

−∞
|ϕ+(z)|2 dz ≥ ρ

16
e2 Re a+(z0−ρ).

Combining those estimates, we obtain (164).
As for the construction of solutions (ψ−, ψ+) on R+, the procedure is similar and leads to the

construction of a system of fundamental solutions (ψ−, ψ+) of (104) on R+ such that (157)—(163)
hold. Let us however underline a key difference: there may happen that Re b+ ≤ 0 since (110)
holds. Despite that, r := 2b+ + 2inσ + c0 = b+ − b− still satisfies Re r > 0 from (111). If however
(n, j, c0) = (0, 0, c∗0), then r = 0 and the above proof does not work, which is why we excluded the case
n = j = 0.

We are now in the position to prove Lemma 20 concerning a fundamental system of solutions to
(104) on R.

Proof of Lemma 20. In the context of this proof, we always assume (n, j) 6= (0, 0), and for the sake of
readability, we denote a±n,j,µ = a±, b±n,j,µ = b±. From Lemma 33, for all n, j and 0 ≤ µ < 1, we are
equipped with the functions

ϕ̃±(z) = P̃±(z)ea
±z, ψ̃±(z) = Q̃±(z)eb

±z,

that we extend to R by solving the Cauchy problem associated to (104). Let us fix n, j and 0 ≤ µ <
µ̃max, where µ̃max is obtained from Lemma 33. Let us first assume that (n, j, µ) are such that ϕ̃+, ψ̃−
are linearly independent. Then we set (ϕ−, ϕ+) := (ψ̃−, ϕ̃+), which is indeed a fundamental system of
solutions. In particular, there exist c− ∈ C and c+ ∈ C\{0} such that for any z ≥ 0, there holds

ϕ+(z) = c−ψ̃−(z) + c+ψ̃+(z) = c−Q̃−(z)eb
−z + c+Q̃+(z)eb

+z.
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Setting
P+(z) = P̃+(z), Q+(z) = c−Q̃−(z)e(b−−b+)z + c+Q̃+(z), (176)

yields that ϕ+ satisfies (117) with P+ ∈ C2
b (R−) and Q+ ∈ C2

b (R+), thanks to (111) and (156)—(157).
Also, since c+ 6= 0, we have lim infz→+∞ |Q+(z)| ≥ |c+| lim infz→+∞ |Q̃+(z)| > 0 from (157). We can
prove in the same way that ϕ− satisfies (117) with P−, Q− belonging to C2

b (R−), C2
b (R+) respectively,

and lim infz→−∞ |P−(z)| > 0.
Next, we claim that ϕ̃+, ψ̃− are never collinear. Let us assume by contradiction that there exist

(n, j) 6= (0, 0) and 0 ≤ µ < µ̃max such that ϕ̃+, ψ̃− are collinear. Then adapting the above proof yields
that (ψ∞, ψ0) := (ϕ̃−, ϕ̃+) is a fundamental system of solutions of (104) such that

ψ∞(z) =

{
P−(z)ea

−z z ≤ 0,

Q+(z)eb
+z z ≥ 0,

ψ0(z) =

{
P+(z)ea

+z z ≤ 0,

Q−(z)eb
−z z ≥ 0,

(177)

with P± ∈ C2
b (R−), Q± ∈ C2

b (R+), lim infz→−∞ |P−(z)| > 0 and lim infz→+∞ |Q+(z)| > 0. Next, set
0 < δ < 1, and let Lδ,ρn,j,µ be the operator defined by (189), with ρ = c0

2 . We shall prove that Lδ,ρn,j,µ is
surjective. For any f ∈ C0,δ

ρ (R,C), using the variation of the constant, we set

v(z) := ψ∞(z)

∫ z

−∞

1

W (ω)
ψ0(ω)f(ω)dω − ψ0(z)

∫ z

0

1

W (ω)
ψ∞(ω)f(ω)dω,

with the Wronskian W (ω) := [ψ′∞ψ0 − ψ′0ψ∞] (ω) 6= 0. By construction, v ∈ C2(R,C) and satisfies
En,j,µ[v] = f . Thus to conclude, it suffices to prove that v ∈ C2,δ

ρ (R,C), or equivalently that v(z) :=
v(z)eρz ∈ C2,δ(R,C). Firstly, we clearly have v ∈ C2(R,C). Also, notice that since (ψ∞, ψ0) solve
(104), there holds

W (ω) = W (0)e−(c0+2inσ)ω = W (0)e(a++a−)ω = W (0)e(b++b−)ω.

Let us prove that v ∈ C2
b (R,C). Setting f := feρz ∈ C0,δ(R,C), for any z ≤ 0, there holds

|v(z)| =
∣∣∣∣P−(z)e(a−+ρ)z

∫ z

−∞

P+(ω)

W (0)
e−(a−+ρ)ωf(ω)dω + P+(z)e(a++ρ)z

∫ 0

z

P−(ω)

W (0)
e−(a++ρ)ωf(ω)dω

∣∣∣∣
≤ 1

|W (0)|
||P−||∞||P+||∞||f ||∞

(
e(Re a−+ρ)z

∫ z

−∞
e−(Re a−+ρ)ωdω + e(Re a++ρ)z

∫ 0

z
e−(Re a++ρ)ωdω

)
≤ 1

|W (0)|
||P−||∞||P+||∞||f ||∞

(
− 1

Re a− + ρ
+

1− e(Re a++ρ)z

Re a+ + ρ

)

≤ 1

|W (0)|
||P−||∞||P+||∞||f ||∞

(
− 1

Re a− + ρ
+

1

Re a+ + ρ

)
,

where the last two lines of calculation are valid since Re a± + ρ = ±1
2 Re(a+ − a−) and (111) holds.

Therefore v is uniformly bounded on R−, and similarly on R+. Next, because

v′(z) = ψ′∞(z)

∫ z

−∞

1

W (ω)
ψ0(ω)f(ω)dω − ψ′0(z)

∫ z

0

1

W (ω)
ψ∞(ω)f(ω)dω,

and P±, Q± ∈ C1
b (R,C), we prove in the same way that v ∈ C1

b (R,C). Finally, plugging v = ve−ρz

into En,j,µ[v] = f , we deduce that

En,j,µ[v] := v′′ + 2inσv′ +

[
−c

2
0

4
−
(
λj − (1 + δ0j)λ0U(z) + (1 + µ)n2σ2

)]
v = f.

Therefore v ∈ C2
b (R,C), and since f ∈ C0,δ(R,C), we deduce immediately that v ∈ C2,δ(R,C), so

that v ∈ C2,δ
ρ (R,C). Therefore Lδ,ρn,j,µ is surjective. From Lemma 35 in Appendix A.2, this operator

is also Fredholm of index zero, and is thus injective. We shall obtain a contradiction by showing that
ψ0 ∈ kerLδ,ρn,j,µ. First, setting ψ0(z) := ψ0(z)eρz, we have ψ0 ∈ C2

b (R,C) from (177). Then, since
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En,j,µ[ψ0] = 0, we also have ψ0 ∈ C2,δ(R,C). Therefore ψ0 ∈ C2,δ
ρ (R,C) satisfies En,j,µ[ψ0] = 0, which

means ψ0 ∈ kerLδ,ρn,j,µ. Consequently our assumption that ϕ̃+, ψ̃− are collinear is absurd. Therefore
for all (n, j) 6= (0, 0) and 0 ≤ µ < µ̃max, the functions (ϕ−, ϕ+) defined by (117) form a fundamental
system of solutions of (104).

Let us prove that P±, Q± satisfy (118). We shall only prove it for P+, Q+, the equivalent for P−, Q−
being similar. Since P+ = P̃+ satisfies (158), P+ satisfies (118) if Rmax ≥ R̃max. As for Q+, we first
need upper bounds on c±. Since ϕ+, ϕ

′
+ are continuous at z = 0, we obtain from (117) and (176), the

following linear system in (c−, c+){
c−Q̃−(0) + c+Q̃+(0) = P̃+(0),

c−

(
Q̃′−(0) + b−Q̃−(0)

)
+ c+

(
Q̃′+(0) + b+Q̃+(0)

)
= P̃ ′+(0) + a+P̃+(0).

(178)

Let us recall that we denotedWψ̃ the Wronskian in z = 0 of the family (ψ̃−, ψ̃+), and there holds (162)
since µ < µ̃max. Therefore the system (178) admits a unique solution for all n, j and 0 ≤ µ < µ̃max,
given by

c− = −

(
Q̃′+(0) + b+Q̃+(0)

)
P̃+(0)−

(
P̃ ′+(0) + a+P̃+(0)

)
Q̃+(0)

Wψ̃

, (179)

c+ = −

(
P̃ ′+(0) + a+P̃+(0)

)
Q̃−(0)−

(
Q̃′−(0) + b−Q̃−(0)

)
P̃+(0)

Wψ̃

. (180)

Let n0, j0 > 0 being given by Lemma 33 and fix n, j such that |n| ≥ n0 or j ≥ j0. Then we deduce
from (116), (159)—(160) and (163) that

|c−| ≤
3
2 |b

+ − a+|+ 1
1
4 |b+ − b−|+ 1

≤ 6C + 4

|b+ − b−|+ 4
,

|c+| ≤
9
4 |a

+ − b−|+ 3
1
4 |b+ − b−|+ 1

≤
9
(
|b+ − b−|+ C

)
+ 12

|b+ − b−|+ 4
.

Thus there exists C > 0 such that for all n, j and 0 ≤ µ < µ̃max,

|c−| ≤
C

1 + |b+ − b−|
, |c+| ≤ C, if |n| ≥ n0 or j ≥ j0. (181)

This leads to, thanks to (158) and (176),

||Q+||L∞(R+) ≤ 2CR̃max, if |n| ≥ n0 or j ≥ j0, (182)

||Q′+||L∞(R+) ≤
C
(
R̃max + |b+ − b−|R̃max

)
1 + |b+ − b−|

+ CR̃max ≤ 2CR̃max, if |n| ≥ n0 or j ≥ j0, (183)

so that Q+ satisfies (118) for any such n, j. We now consider fixed indexes |n| ≤ n0 and j ≤ j0. It is
clear that there exists M > 0 such that

max
(
|b±n,j,µ|, |a

±
n,j,µ|

)
≤M, ∀|n| ≤ n0, ∀j ≤ j0, ∀0 ≤ µ < µ̃max.

Then combining this with (158) and (162), we have

|c±| ≤
2 (M + 1) R̃2

max

Wmin
=: K,

so that we deduce
||Q+||L∞(R+) ≤ 2KR̃max, ∀|n| ≤ n0, ∀j ≤ j0. (184)

||Q′+||L∞(R+) ≤ K
(
R̃max + |b+ − b−|R̃max

)
+KR̃max ≤ 2K (1 +M) R̃max, ∀|n| ≤ n0, ∀j ≤ j0.

(185)
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Consequently, from (182)—(185), we obtain that Q+ satisfies (118) for all n, j and 0 ≤ µ < µ̃max.
Let us now prove that Wϕ satisfies (120). Let us consider indexes n, j such that |n| ≥ N0 ≥ n0 or

j ≥ J0 ≥ j0, where N0, J0 > 0 are large enough so that, thanks to (113), we have∣∣∣b+n,j,µ − b−n,j,µ∣∣∣ ≥ max
(
2C + 24 , 702

(
2R2

max + 1
))
, ∀µ ∈ [0, 1), (186)

1
12

∣∣∣b+n,j,µ − b−n,j,µ∣∣∣− 3
2C∣∣∣b+n,j,µ − b−n,j,µ∣∣∣+ 1
≥ 1

13
, ∀µ ∈ [0, 1). (187)

Since N0 ≥ n0 and J0 ≥ j0, we also have thanks to (159)—(160)∣∣∣Wψ̃

∣∣∣ ≤ 3

2
|b+ − b−|+ 1 ≤ 3

2

(
1 + |b+ − b−|

)
,

and thus, using (116), (159)—(160) and (180), we deduce

|c+| ≥
1
4 |b

+ − b−| − 1
4C − 3

3
2 (1 + |b+ − b−|)

≥
1
12 |b

+ − b−|
1 + |b+ − b−|

,

where we used (186) for the last inequality. Combining this lower bound with (159), (176) and (181),
we have

|Q+(0)| ≥ |c+| −
3

2
|c−| ≥

1

13
,

where we used (187) for the last inequality. Let us also recall that, by construction, we have |Q−(0)| =
|Q̃−(0)| ≥ 1

2 from (159) and because |n| ≥ N0 ≥ n0. Combining that with (118), we obtain

Wϕ :=
[
(b− − b+)Q−Q+ +Q′−Q+ −Q′+Q−

]
(0) (188)

|Wϕ| ≥
1

26

∣∣b+ − b−∣∣− 2R2
max

≥ 1

27

∣∣b+ − b−∣∣+ 1,

since (186) holds. Thanks to (113), one can readily show that Wϕ satisfies (120) with CW =

min
(
1, 1

27C
)−1.

Let us prove that Wϕ = Wn,j,µ
ϕ satisfies (119) for indexes |n| ≤ N0 and j ≤ J0. From (188), since

Q− = Q̃− by construction, since Q+ satisfies (176) with c± given by (179)—(180), and because Wψ̃ is
given by (162), there exists a polynomial function P such that for all n, j, µ, we have

Wn,j,µ
ϕ =

1

Wn,j,µ

ψ̃

P
(
Q̃−(0), Q̃′−(0), Q̃+(0), Q̃′+(0), P̃+(0), P̃ ′+(0), a+, b+, b−

)
=:

1

Wn,j,µ

ψ̃

Pn,j,µ.

One can readily check that
∣∣∣a±n,j,µ − a±n,j,0∣∣∣ , ∣∣∣b±n,j,µ − b±n,j,0∣∣∣ → 0 as µ → 0 uniformly in |n| ≤ N0 and

j ≤ J0. Combining this with (161), we obtain

sup
|n|≤N0,j≤J0

∣∣Pn,j,µ − Pn,j,0∣∣ −−−→
µ→0

0.

Meanwhile, the same holds for Wn,j,µ

ψ̃
, as we showed in the proof of (162). Since (162) holds, we have

sup
|n|≤N0,j≤J0

∣∣Wn,j,µ
ϕ −Wn,j,0

ϕ

∣∣ −−−→
µ→0

0.

Also, there holdsWn,j,0
ϕ 6= 0 for all n, j since ϕ−, ϕ+ are linearly independent. Thus there exists m > 0

such that
inf

|n|≤N0,j≤J0

∣∣Wn,j,0
ϕ

∣∣ ≥ m.
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Therefore, and because N0, J0 are uniform in µ ∈ [0, 1) from (186)—(187), we deduce the existence of
0 < µmax ≤ µ̃max such that for all 0 ≤ µ < µmax we have

inf
|n|≤N0,j≤J0

∣∣Wn,j,µ
ϕ

∣∣ ≥ m

2
.

Combining this with (120), we see that (119) holds with W0 = min( 1
CW

, m2 ).
Finally, (121) simply follows from (164) since ϕ+ = ϕ̃+ by construction. The proof of Lemma 20

is thus complete.

A.2 Fredholm analysis

We recall below [45, Theorem 2.4, p. 366].

Theorem 34 (Fredholm property in C2,δ(R,Rd)). Fix 0 < δ < 1 and d ∈ N+. Consider the operator
L : C2,δ(R,Rd)→ C0,δ(R,Rd) defined by

Lu := α(x)u′′ + β(x)u′ + γ(x)u,

where the coefficients α(x), β(x), γ(x) are smooth d × d matrices and there is α0 > 0 such that
〈α(x)ξ, ξ〉 ≥ α0|ξ|2 for any ξ ∈ Rd. Assume that α(x), β(x), γ(x) have finite limits as x → ±∞,
denoted respectively α±, β±, γ±. Finally, we define the limiting operators

L±u = α±u
′′ + β±u

′ + γ±u,

and assume that

∀ξ ∈ R, T±(ξ) = −α±ξ2 + β±iξ + γ± is an invertible matrix.

Then L is a Fredholm operator, and its index is given by indL = k+ − k−, where

k± = Sp(M±) ∩ {z ∈ C : Re z > 0} , M± =

(
0 −Id

α−1
± γ± α−1

± β±

)
∈M2d×2d(R).

We now apply Theorem 34 to our case.

Lemma 35 (Fredholm property on weighted spaces). Let (n, j) ∈ Z × N with (n, j) 6= (0, 0), and
0 ≤ µ < 1. Set 0 < δ < 1, ρ := c0

2 > 0 and

Lδ,ρn,j,µ : C2,δ
ρ (R,C)→ C0,δ

ρ (R,C) (189)

u 7→ En,j,µ[u],

where En,j,µ[u] is given by (100), and for any k ∈ N, we set

Ck,δρ (R,C) :=
{
f ∈ Ck(R,C) : ||f ||

Ck,δρ (R,C)
<∞

}
, ||f ||

Ck,δρ (R,C)
:= ‖z 7→ f(z)eρz‖Ck,δ(R,C) .

Then Lδ,ρn,j,µ is Fredholm with index zero.

Proof. We cannot apply Theorem 34 to Lδ,ρn,j,µ because of the weighted space and the functions involved
being complex. Thus we define successively the real counterpart of Lδ,ρn,j,µ by

Lδ,ρn,j,µ : C2,δ
ρ (R,R2) → C0,δ

ρ (R,R2)

u = (u1, u2) 7→

(
u′′1 + c0u

′
1 − 2nσu′2 −

(
λj − (1 + δ0j)λ0U(z) + (1 + µ)n2σ2

)
u1

u′′2 + c0u
′
2 + 2nσu′1 −

(
λj − (1 + δ0j)λ0U(z) + (1 + µ)n2σ2

)
u2

)
,
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as well as the operator M δ,ρ
n,j,µ : C2,δ(R,R2)→ C0,δ(R,R2) with

M δ,ρ
n,j,µu = eρzLδ,ρn,j,µ

(
ue−ρz

)
=

(
u′′1 +

[
ρ2 − ρc0 −

(
λj − (1 + δ0j)λ0U(z) + (1 + µ)n2σ2

)]
u1 − 2nσ (u′2 − ρu2)

u′′2 +
[
ρ2 − ρc0 −

(
λj − (1 + δ0j)λ0U(z) + (1 + µ)n2σ2

)]
u2 + 2nσ (u′1 − ρu1)

)
.

We may rewrite the above operator as

M δ,ρ
n,j,µu =

(
1 0
0 1

)
u′′ +

(
0 −2nσ

2nσ 0

)
u′ +

(
q(z) 2nσρ
−2nσρ q(z)

)
u =: I2u

′′ + βu′ + γ(z)u,

with, given that ρ = c0
2 ,

q(z) := −c
2
0

4
−
(
λj − (1 + δ0j)λ0U(z) + (1 + µ)n2σ2

)
.

We also set

γ± = lim
z→±∞

γ(z) =

(
q± nσc0

−nσc0 q±

)
,

R 3 q± = lim
z→±∞

q(z) = −c
2
0

4
−
(
λj + (1 + µ)n2σ2

)
+

{
(1 + δ0j)λ0, if q± = q−,

0, if q± = q+.

Finally, we define
T±ρ : ξ ∈ R 7→ −ξ2I + iξβ + γ± ∈M2×2(R).

In order to apply Theorem 34, we have to check if T±ρ (ξ) is invertible for any ξ ∈ R. We compute

detT±ρ (ξ) =

∣∣∣∣ −ξ2 + q± −2inσξ + 2nσρ
2inσξ − 2nσρ −ξ2 + q±

∣∣∣∣
=
(
−ξ2 + q±

)2
+ (2inσξ − 2nσρ)2

= PR(ξ)− 8in2σ2ρξ,

with PR(ξ) a real polynomial function of ξ. Assume by contradiction that there exists ξ ∈ R such that
detT±ρ (ξ) = 0. Then necessarily nξ = 0. Then n has to be zero, for otherwise we would have ξ = 0,
while

detT±ρ (0) = q2
± + (2nσρ)2 > 0.

Therefore n = 0, but this would yield

detT±ρ (ξ) =
(
−ξ2 + q±

)2
.

However, since (n, j) 6= (0, 0)

q+ = −c
2
0

4
− λj < −

1

4

(
c2

0 + 4λ0

)
≤ 0, q− = q+ + λ0 < q+ ≤ 0,

which means that if n = 0, we again have detT±ρ (ξ) 6= 0 for any ξ ∈ R, which contradicts our
assumption. Consequently, T±ρ (ξ) is invertible for any ξ ∈ R.

Hence, from Theorem 34, we deduce that Lδn,j,µ is Fredholm with

indM δ,ρ
n,j,µ = k+ − k−, k± = SpM± ∩ {z : Re z > 0} ,

where

M± :=

(
0 −I2

γ± β

)
=


0 0 −1 0
0 0 0 −1
q± nσc0 0 −2nσ
−nσc0 q± 2nσ 0

 .
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Let us first determine k+. We compute

det(M+ −XI4) =

∣∣∣∣ q+ +X2 nσc0 + 2nσX
−nσc0 − 2nσX q+ +X2

∣∣∣∣
= (q+ +X2)2 + (nσc0 + 2nσX)2

=
(
X2 + q+ − inσc0 − 2inσX

) (
X2 + q+ + inσc0 + 2inσX

)
,

from which we deduce that the eigenvalues of M+ are

X1
± =

2inσ ±
√

(2inσ)2 − 4(q+ − inσc0)

2
, X2

± =
−2inσ ±

√
(2inσ)2 − 4(q+ + inσc0)

2
,

and thus

Re (2X1
±) = ±Re

√
−4n2σ2 − 4q+ + 4inσc0

= ±Re
√
c2

0 + 4λj + 4inσc0 + 4µn2σ2

= ±Re (b+n,j,µ − b
−
n,j,µ).

Notice that, since (n, j) 6= (0, 0), we have Re (b+n,j,µ − b
−
n,j,µ) > 0, so that ReX1

− < 0 < ReX1
+. Similar

calculations yield

Re (2X2
±) = ±Re

√
c2

0 + 4λj − 4inσc0 + 4µn2σ2 = ±Re (b+−n,j,µ − b
−
−n,j,µ),

therefore we also have ReX2
− < 0 < ReX2

+. As a result k+ = 2.
Let us now turn our attention to k−. Similar calculations yield that the eigenvalues of M− are

Y 1
± =

2inσ ±
√

(2inσ)2 − 4(q− − inσc0)

2
, Y 2

± =
−2inσ ±

√
(2inσ)2 − 4(q− + inσc0)

2
,

which yields

Re (2Y 1
±) = ±Re

√
−4n2σ2 + 4inσc0 − 4q−

= ±Re
√
c2

0 + 4inσc0 + 4λj + 4µn2σ2 − 4(1 + δ0j)λ0

= ±Re (a+
n,j,µ − a

−
n,j,µ).

Notice that Re (a+
n,j,µ − a

−
n,j,µ) > 0, so that ReY 1

− < 0 < ReY 1
+, and similarly ReY 2

− < 0 < ReY 2
+.

Hence, k− = 2, which means indM δ,ρ
n,j,µ = 0. Since the operator Sρ : u ∈ C2,δ(R,R2) 7→ ue−ρz ∈

C2,δ
ρ (R,R2) is continuously invertible with S−1

ρ : u ∈ C2,δ
ρ (R,R2) 7→ ueρz ∈ C2,δ(R,R2), we have that

Lδ,ρn,j,µu = SρM
δ,ρ
n,j,µS

−1
ρ u shares the same Fredholm property and index asM δ,ρ

n,j,µ. From there, we prove
similarly that the operator Lδ,ρn,j,µ defined by (189) is also Fredholm and satisfies indLδ,ρn,j,µ = 0. The
proof is thus complete.
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