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Abstract1

Pathogen adaptation to multiple selective pressures challenges our ability to control their spread.2

Here we analyse the evolutionary dynamics of pathogens spreading in a heterogeneous host popu-3

lation where selection varies periodically in space. We study both the transient dynamics taking4

place at the front of the epidemic and the long-term evolution far behind the front. We identify five5

types of epidemic profiles arising for different levels of spatial heterogeneity and different costs of6

adaptation. In particular, we identify the conditions where a generalist pathogen carrying multiple7

adaptations can outrace a coalition of specialist pathogens. We also show that finite host pop-8

ulations promote the spread of generalist pathogens because demographic stochasticity enhances9

the extinction of locally maladapted pathogens. But higher mutation rates between genotypes can10

rescue the coalition of specialists and speed up the spread of epidemics for intermediate levels of11

spatial heterogenity. Our work provides a comprehensive analysis of the interplay between migra-12

tion, local selection, mutation and genetic drift on the spread and on the evolution of pathogens13

in heterogeneous environments. This work extends our fundamental understanding of the outcome14

of the competition between two specialists and a generalist strategy (single- versus multi-adapted15

pathogens). These results have practical implications for the design of more durable control strate-16

gies against multi-adapted pathogens in agriculture and in public health.17

Impact summary: Pathogen adaptation is constantly eroding the efficacy of prophylactic

and therapeutic measures against the spread of infectious diseases. A promising way to limit

the spread of multi-adapted pathogens is to distribute different control measures across space

(e.g., different vaccines, different resistant varieties of crop in agriculture). Yet, the influence

of the spatial deployment of these interventions on the genetic composition of spreading epi-

demics remains unclear. Is it possible to identify optimal deployment strategies that reduce

the spread and the speed of adaptation of resistant pathogens? We analyse the evolution of

pathogen adaptations throughout an epidemic spreading in a heterogeneous host population

where selection varies periodically in space. We show how lower spatial heterogeneity can speed

up the epidemic spread and disfavour multi-adapted pathogens. But this effect can be altered

qualitatively by the demographic stochasticity taking place at the edge of the front and by

higher rates of mutation between different pathogen genotypes. We predict the composition

of the pathogen population both far behind and at the front of the epidemic. This analysis

allows us to elucidate the consequences of the effects of spatial heterogeneity on the coexistence

between specialist (single-adaptated) and generalist (multi-adapted) pathogen strategies.
18
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1 Introduction19

Pathogen epidemics can have devastating consequences for animal and plant species and it is particu-20

larly important to understand which factors govern the speed of epidemics to predict and potentially21

prevent their spread. Determining the speed of biological invasions has attracted a lot of attention22

from theoretical biologists (Fisher 1937; Kolmogorov, Petrovsky, and Piskunov 1937; Skellam 1951).23

Under the simplifying assumption that the invasion takes place in a homogeneous environment (e.g.24

an epidemic spreading in a fully susceptible host population), diffusion models can be used to pre-25

dict the asymptotic speed of the epidemic (Fisher 1937; Kot, Lewis, and Driessche 1996; Shigesada26

and Kawasaki 1997). In this case the population is expected to spread as a travelling wave with a27

constant speed equal to 2
√

σr, where r is the growth rate of the population at low density and σ is28

the diffusion coefficient that measures how quickly the organisms disperse. Spatial heterogeneity in29

the environment, however, may dramatically affect the spread of the invading organism (Shigesada30

and Kawasaki 1997). If the spatial variation is periodic, the natural extension of the travelling front31

is the so-called pulsating front characterized by its average speed (Berestycki, Hamel, and Roques32

2005a,b; Shigesada and Kawasaki 1997). Earlier studies have mostly focused on the spatial dynamics33

of invasions under the assumption that evolutionary dynamics could be neglected. Yet, evolution can34

be very rapid during invasions and this evolution can affect the speed of the spread in homogeneous35

environments (Griette, Raoul, and Gandon 2015; Osnas, Hurtado, and Dobson 2015; Perkins et al.36

2013; Wei and Krone 2005).37

Here we study how the pathogen evolution can affect the spread of an epidemic taking place in a38

spatially heterogeneous host population. Host variation is assumed to affect resistance to infection and39

pathogen transmission. Many different situations could generate this type of spatial heterogeneity. For40

instance, in agriculture the use of different resistant varieties in crops could be a way to manipulate the41

spatial distribution of host resistance to a specific pathogen (Gilligan 2008; Mikaberidze, McDonald,42

and Bonhoeffer 2015; Mundt 2002). In animal species, the use of different vaccines at different loca-43

tions could also generate a spatial mosaic of immunity (McLeod, Wahl, and Mideo 2021). Crucially,44

we allow the pathogen to adapt to this diversity of host resistance and we consider different types of45

adaptations. First, the pathogen may evolve a specialist strategy allowing the optimal exploitation of46

a single resistant host. Second, the pathogen may evolve a generalist strategy allowing the pathogen47

to exploit distinct resistant hosts. But this ability to infect multiple host may carry intrinsic fitness48

costs (e.g. a lower transmission rate). The analysis of the competition between specialist and gen-49

eralist strategies is a classical evolutionary question which has been explored by theoretical studies50

under different biological scenarios (Levins 1968; Parvinen and Egas 2004; Wilson and Yoshimura51
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1994). These studies have shown that the long-term evolutionary outcome and the potential coexis-52

tence between multiple strategies depend on the balance between the amount of spatial heterogeneity53

and the homogenizing effect of migration. Yet, it is unclear if the same principle holds away from54

the equilibrium, at the front of a population that is spreading in a heterogeneous environment. In55

particular, it is unclear if one expects the generalist strategy to be more frequent at the edge or far56

behind the front, and how this evolution can affect the speed of the spread. Besides, a better under-57

standing of the consequences of the heterogeneity of host resistance on pathogen dynamics could have58

practical implications for disease control. For instance, we could optimize the composition of the host59

population to reduce epidemic spread and limit the evolution of multi-adapted pathogens which are60

expected to erode dramatically the efficacy of control efforts.61

In the following, we take advantage of the theoretical framework of pulsating fronts to examine62

the spatial dynamics of different pathogens spreading in a one-dimensional environment. First, we63

study the effect of the spatial heterogeneity on the speed of a monomorphic pathogen population. In a64

second step, we allow mutations between different pathogen genotypes and we analyse the evolution of65

a coalition of different pathogen genotypes. We contrast the composition of the pathogen population66

at the edge and behind the front and we identify five different types of epidemic profiles. Finally, we67

examine the effect of demographic stochasticity on the speed of spreading epidemics when the host68

population is assumed to be of finite size.69

2 Methods70

We model the dynamics of a directly transmitted pathogen in a one-dimensional habitat. At time71

t and position x, the host population is divided into uninfected individuals, S(t, x), and infected72

individuals, I(t, x). We assume that dead hosts are immediately replaced by new susceptible hosts73

(because host fecundity is assumed to be large and not limiting) so that the total density of hosts is74

assumed to remain constant over space and time: K = S(t, x) + I(t, x). We focus on a scenario where75

the environment is divided into two different habitats where the hosts are either of type A or of type76

B. For instance, this scenario could result from the use of two different vaccines at different locations77

or, if we consider the spread of a phytopathogen in crop, by the use of distinct host resistant varieties78

in different fields. We consider a simple spatial pattern where host composition varies periodically and79

we use L to denote the period of the spatial fluctuation of host composition. Because all the hosts80

are resistant to some pathogen genotype we expect that the pathogens fully sensitive to both types81

of host resistance will be rapidly outcompeted by single- or multi-adapted genotypes. We thus focus82

our analysis on the dynamics of three adapted pathogen genotypes circulating in the host population:83
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(i) the density of hosts infected with the genotype only able to infect host of type A is noted Ia(t, x)84

(single-adapted genotype a to host type A), (ii) the density of hosts infected with the genotype only85

able to infect host of type B is noted Ib(t, x) (single-adapted genotype b to host type B) and (iii)86

the density of hosts infected with the genotype able to infect both types of hosts is noted Im(t, x)87

(m for multi-adaptation to both types of hosts). Coinfection by different genotypes is not allowed88

and each genotype i is characterized by βi(x), the rate at which transmission occurs between infected89

and susceptible hosts after a contact at position x. The rate of transmission of the multi-adapted90

genotype βm is independent of space because multi-adaptation implies that the rate of transmission91

is not affected by the treatment. In contrast, the rates of transmission βa(x) and βb(x) vary in space92

because we assume that host resistance reduces transmission (without affecting the other life history93

traits). All the infections are assumed to end (because of clearance and/or increased mortality due94

to pathogen virulence) at a rate α. More precisely, we assume that βa (resp. βb) takes values α + r95

in populations of host A only (resp. B only), and value α − r in populations of host B only (resp. A96

only), see Fig. 1. This symmetry between the two specialists simplifies the following analysis of the97

model. Note, however, that we also examine a scenario when we introduce some asymmetry in the98

maximal growth rates of the two specialists in the Supplementary Information (section 1.2.1 and99

Fig. S3). Mutations may occur between these three genotypes and µij stands for the rate of mutation100

from genotype i to genotype j.101

The transmission of the pathogen is assumed to be local (infected hosts can only infect susceptible102

hosts at the same spatial location) but both susceptible and infected hosts are allowed to diffuse in103

one dimension with a fixed rate σ. In other words, we neglect the influence the pathogen may have104

on the mobility of its host. Our model can thus be written as the following set of reaction–diffusion105

equations (for readability, we drop the time and space dependence notation on host densities):106



∂Ia

∂t
= Ia

[
ra(x) − βa(x) I

K

]
+ σ

∂2Ia

∂x2 + µbaIb + µmaIm − (µab + µam)Ia

∂Ib

∂t
= Ib

[
rb(x) − βb(x) I

K

]
+ σ

∂2Ib

∂x2 + µabIa + µmbIm − (µba + µbm)Ib

∂Im

∂t
= Im

[
rm − βm

I

K

]
+ σ

∂2Im

∂x2 + µamIa + µbmIb − (µma + µmb)Im

(1)

where I = Ia +Ib +Im. Note that ri(x) = βi(x)−α is the malthusian growth rate of the single-adapted107

genotype i (with i ∈ {a, b}) and rm = βm − α is the malthusian growth rate of the multi-adapted108

genotype m, when most of the hosts are uninfected (i.e. at the edge of the epidemic). Yet, when109

the pathogen population starts to increase locally the density of uninfected hosts drops and decreases110

the transmission opportunities as in classical epidemiological models with direct-transmission (see111
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also (Débarre, Lenormand, and Gandon 2009; Griette, Raoul, and Gandon 2015). This drop in host112

density would be even stronger if host fecundity was not able to compensate host mortality (the total113

density of the host population would drop due to the spread of the pathogen). For simplicity, however,114

we restrict our analysis to the case where S(t, x) + I(t, x) remains constant and equal to K.115

In the following we study the speed of spreading epidemics in a spatially heterogeneous environment116

as a function of (i) the period of the spatial fluctuation in the composition of the host population,117

(ii) the transmission rates of the different genotypes in the different habitats. We first consider the118

spread of single genotypes before analysing the effect of mutations among genotypes on the speed of a119

polymorphic pathogen population. Finally, we explore the effect of demographic stochasticity on the120

speed of monomorphic and polymorphic epidemics spreading in heterogeneous environments.121

3 Results122

3.1 The speed of a monomorphic pathogen population123

The multi-adapted genotype m does not “feel” the spatial heterogeneity of host population. When124

such a genotype is introduced in the host population and if we assume no mutation (µma = µmb = 0)125

the above system reduces to the spread of a single pathogen in a uniform environment. The pathogen126

population spreads as a travelling wave with a speed equal to (Griette, Raoul, and Gandon 2015;127

Osnas, Hurtado, and Dobson 2015; Shigesada and Kawasaki 1997):128

cm = 2
√

σrm. (2)

The analysis of the speed of a single-adapted genotype i ∈ {a, b} is more challenging because the129

growth rate of the pathogen varies periodically in space between ri(x) = r (when the genotype is130

adapted to the host in x) and ri(x) = −r (when the genotype is not adapted to the host in x). It131

is possible to derive good approximations for the speed of the epidemic in two limit cases (Hamel,132

Fayard, and Roques 2010; Hamel, Nadin, and Roques 2011), namely when L is small and when L is133

large. When the period of the fluctuation of the environment is very small (i.e. L → 0) the grain134

of the environment is so small that the growth rate of the pathogen is equal to the average growth135

rate in the two habitats: r = r+(−r)
2 = 0. In contrast, when the period of the fluctuation is large136

the pathogen will move very fast when it is adapted to the host and it will slow down when the host137

resistance reduces its transmission rate. In the limit when L → ∞ the speed reaches an asymptote138
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that can be described explicitly. We then get, for i ∈ {a, b},139

ci ∼ 0 when 0 < L ≪ 1, ci ∼
( 2√

3

)3/2 √
r when 1 ≪ L. (3)

Moreover the speed of the single-adapted genotype epidemic increases with L, the period of the spatial140

fluctuation of the environment (Fig. 2).141

3.2 The speed of a polymorphic pathogen population142

Before considering the full system (with the 3 pathogen genotypes: a, b and m) we examine the143

dynamics of a coalition of two single-adapted genotypes (a and b) each adapted to distinct types144

of hosts. When the mutation rates are very low (i.e. µaj = µbj ≈ 0) we recover the result of a145

monomorphic population (red line in Fig. 2). However, numerical simulations with a fixed mutation146

rate µ between single-adapted genotypes indicate that increasing the mutation rate has a complex effect147

on the speed of the polymorphic population (Fig. 2). When L is small, increasing the mutation rate148

has only a weak effect on epidemic speed because the environment changes so fast that both specialist149

genotypes are almost equifrequent. For intermediate values of L, the size of the area populated by150

a single host type allows the adapted genotype to outcompete the other genotype and to take up151

some speed. Hence, the composition of the epidemic fluctuates between the two specialist genotypes152

and a higher mutation rate speeds up the emergence of this locally adapted genotype and increases153

the propagation speed. For larger values of L, however, this effect is dominated by the detrimental154

emergence of ill-adapted mutants (mutation load) that slows down the propagation within an area155

populated by a single host type. Hence, the composition of the pathogen population at the front of156

the epidemic depends on the balance between local selection, mutation and L which measures the157

amount of spatial heterogeneity. We show in the Supplementary Information (section 1.2.1) that158

there is a threshold value Lc below which the whole epidemic can be driven by a single specialist:159

Lc ∼ 2
√

2
33/4 −

√
2

√
σ

r
ln
(√

σr

µ

)
. (4)

When L < Lc the propagation of each specialist is independent because they can move through the160

“bad habitat” by diffusion. In contrast, when L > Lc the bad habitat slows down the spread of the161

maladapted specialist and the coalition of two specialists is faster than a single specialist because they162

“pass the baton” when they move to a different habitat. The composition of the pathogen population163

at the front of the epidemic fluctuates between the two specialist genotypes. Higher mutation rates164

speed up the epidemic because mutation speeds up the switch between the two specialists at the tip165
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of the front. Note, however, that high mutation rates generate a mutation load when L ≫ Lc via166

the recurrent introduction of a single-adapted genotype unable to infect the local host type. This is167

why the maximal speed of the coalition of single-adapted genotypes can never reach the speed of a168

universally adapted pathogen (ca+b < 2
√

σr in Fig. 2).169

When we assume a fixed mutation rate µ among the three pathogen genotypes, the epidemic170

spreads faster than epidemics where only the coalition of two specialists is present, provided the171

period of the fluctuation is small (Fig. 3). Indeed, when L is small the multi-adapted genotype m172

outpaces the single-adapted genotypes at the front of the epidemic (Fig. 3). In contrast, when L173

is large, the multi-adapted genotype is outcompeted by the coalition of the two specialists because174

we assume the maximal growth rate r of the specialits is higher than the growth rate rm of the175

generalist (in particular when the mutation rate between single-adapted genotypes is large enough).176

Increasing the mutation rate tends to lower the speed of the epidemic when L is small or very large,177

because mutations reintroduce maladapted genotypes and build up the mutation load (Fig. 4). For178

intermediate values of L, however, increasing the mutation rate can increase the speed of the pathogen179

spread, by speeding up the propagation of a the coalition of specialists a and b (Fig. 4). This is due180

to the beneficial effects of mutations on the speed of the coalition of two single-adapted genotypes181

that we discussed above (Fig. 2).182

3.3 The speed of stochastic epidemics183

The above results rely on the assumption that the deterministic model we are using provides a good184

description of the spread of a pathogen epidemics. Yet, the front of the epidemic is driven by a small185

number of infections. The finite nature of the pathogen population at the edge of the epidemics186

yields demographic stochasticity and is expected to slow down its spread (Brunet and Derrida 1997;187

Griette, Raoul, and Gandon 2015; Mueller, Mytnik, and Quastel 2011; Snyder 2003). In the following188

we explore the effect of stochasticity using an individual-based model that takes into account the189

finite number N of hosts at each spatial location. The individual transitions between the different190

states of the hosts are described by a list of random events (transmission, mutation, death; see the191

Supplementary Information section 2.1 for a detailed description of the individual-based model).192

As expected, this stochastic model converges to the above deterministic model when N is assumed193

to be very large. To study the effect of demographic stochasticity on epidemic spread we performed194

simulations with our individual-based model and measured the average speed on a long time interval195

after the influence of the initial condition is lost.196

First, we discuss the speed of monomorphic epidemics in the absence of mutations. The speed of197
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the multi-adapted genotype is decreased by the effect of stochasticity but remains very close to the198

deterministic approximation (see Brunet and Derrida 1997; Griette, Raoul, and Gandon 2015). The199

magnitude of this drop is expected to be proportional to
(
ln
(

N
δx

))−2
, where N

δx represents the number200

of hosts per unit of space. In contrast, the speed of the single-adapted specialist is dramatically201

altered by stochasticity (Fig. 3). This speed is always lower than the speed of the deterministic202

approximation but, when L is large the speed can drop abruptly to zero which indicates that the203

pathogen cannot spread any more. Indeed, when the period of the fluctuation of the environment204

reaches a threshold value Le ∼ 4
3

√
σ
r ln

(
N
δx

)
the pathogen cannot cross the unfavourable habitat (see205

Supplementary Information, section 2.2.2). In particular, the pathogen is very likely to go extinct206

in the unfavourable habitat when the population size is small, the diffusion rate is limited and its207

growth rate is very negative (remember that we assume the growth rate to be −r in the unfavourable208

habitat). Note that this critical period Le only increases logarithmically with the population size N ,209

so that this “blocking effect” can be observed even with relatively large population sizes. This explains210

why the propagation speed of a single-adapted genotype is maximised for intermediate values of L.211

In the deterministic approximation, in contrast, the pathogen can always cross unfavourable habitats212

because extinctions do not occur and the speed of epidemic spread increases monotonically with L.213

Second, if we allow some mutation between the two single-adapted genotypes, the epidemic can214

cross those unfavorable environments because mutations will rescue pathogen populations when L >215

Le. Consequently, increasing mutation rates can have a dramatic impact on the speed of epidemics216

when L is large (Fig. 4). Finally, when we allow the mutation between the three different genotypes,217

the speed of the epidemics is close to (but lower than) the deterministic approximation, and this speed218

can decrease when L > Le and the mutation rates are small enough (Fig. 4). As pointed out above,219

the magnitude of this effect on the reduction of the epidemic speed is of the order (ln(N))−2 when N220

is large enough.221

3.4 Pathogen diversity far behind the epidemic front222

In the previous sections we focused on the speed and the composition of the pathogen population223

at the edge of the epidemic. Next, we characterise the composition of the pathogen population far224

behind the front, when it reaches an endemic equilibrium. Note that the composition of the pathogen225

population behind the front is much less sensitive to the effect of demographic stochasticity because226

at the endemic equilibrium, the number of pathogens present is much larger than at the front of the227

epidemics, diminishing greatly the risk of genotype extinctions. Hence, we do not need to distinguish228

the deterministic and stochastic models in this section. Three cases can be observed (Fig. 5):229
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(i) The multi-adapted genotype dominates: If both the cost of being multi-adapted (i.e. r −rm)230

and L are low, the generalist strategy outcompetes the specialists and goes to fixation.231

(ii) The coalition of specialist genotypes dominates: When both the cost of being multi-adapted232

(i.e. r − rm) and L are large, the coalition of specialists outcompetes the generalist strategy.233

(iii) The three genotypes coexist: The coexistence between the three different genotypes is also234

possible for a range of parameter values when both rm and L are relatively large. Indeed, as pointed235

by (Débarre and Lenormand 2011), a generalist strategy can outcompete specialists at the interface236

between habitats.237

3.5 Five epidemic profiles238

The above analysis shows how the composition of the pathogen population is dominated by different239

genotypes at the edge and behind the front of the epidemic. Indeed, even if all genotypes are reintro-240

duced locally by mutation, the spatial variability of the environement and the spread of the population241

affects the relative competitive abilities of the different genotypes at different locations. In particular,242

when we vary both the period of host heterogeneity L and the growth rate rm of the multi-adapted243

genotype, we can distinguish five different profiles of epidemics (Fig. 5). Interestingly, we identify244

an epidemic type (marked by III in Fig. 5, see also Fig. 6) where the multi-adapted genotype m245

drives the spread of the epidemic but is outcompeted later on by the coalition of the two specialists246

(single-adapted genotypes a and b). In other words, the analysis of the transitory dynamics reveals247

conditions where the multi-adapted genotype is able to emerge, taking advantage of the presence of248

numerous uninfected host populations, even though specialized strategies are better competitors once249

the epidemics has developed and many hosts have been infected.250

We recover the same five epidemic profiles with finite host population sizes (Fig. 5) but de-251

mographic stochasticity affects the genetic diversity at the front of the epidemic where the size of252

the pathogen population is reduced. Single-adapted genotypes are most sensitive to the influence of253

stochasticity because these specialized genotypes can reach very low density in unfavourable habitats.254

The multi-adapted genotype m benefits from the influence of this demographic stochasticity (compare255

the size of epidemic type marked by III in the deterministic and stochastic cases illustrated by Fig. 5).256

4 Discussion257

Our study provides a comprehensive analysis of the evolution of pathogen specialization in a spreading258

epidemics. Our model allows us to examine both the long-term evolutionary outcome far behind the259

front of the epidemic, and the transient evolution taking place at the front of the epidemic. We260
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recover the classical result of previous evolutionary analyses showing that the long-term evolutionary261

outcome depends on the balance between spatial heterogeneity and the amount of migration among262

habitats. Larger patches of homogeneous habitats favor the coalition of locally adapted specialists263

in each habitat, but migration tends to favor generalist strategies able to cope with a diversity of264

habitats (Christiansen 1975; Day 2000; Débarre and Gandon 2010; Débarre, Ronce, and Gandon 2013;265

Mirrahimi and Gandon 2020). We also recover the possibility to maintain the coexistence of specialists266

and generalist strategies when the generalist can be stably maintained at the interface between habitats267

(Débarre and Lenormand 2011). Interestingly, our analysis of the transient evolutionary dynamics of268

the pathogen in a spreading epidemic reveals that the composition of the pathogen population can269

be very different at the front of the epidemic. Indeed, even if the local composition of the host270

population does not change in time, the pathogen present at the front of the epidemic experiences271

temporal fluctuations of the environment. Frequent temporal fluctuations favor the generalist strategy272

because, in spite of its constitutive fitness cost (i.e. rm < r in our model), the generalist strategy does273

not feel the heterogeneity of the environment. Consequently, we show that multi-adapted pathogens274

are expected to drive the spread of epidemics in finely grained environments. In contrast, when the275

spatial fluctuations are larger, the coalition of specialists is expected to drive the epidemics. Indeed,276

even if the transition between the two habitats can slow down the average speed of a coalition of277

specialists, the speed of each specialist is maximized when they are locally adapted. Contrasting the278

composition of the pathogen population at the edge and at the back of the epidemic allowed us to279

identify five different types of epidemic profiles in Fig. 5. This figure shows that the coexistence of280

specialists and generalists strategies is promoted by a lower fitness of the multi-adapted genotype and281

a larger period of host heterogeneity. In general we find that the speed of the epidemic is increased282

with larger period of host heterogeneity but, as discussed below, these results are modulated by the283

pathogen mutation rates and by the amount of demographic stochasticity.284

We found that mutation among pathogen genotypes is a double edged sword: (i) it allows the285

pathogen to acquire adaptive mutations but (ii) it can also produce a mutation load with the recur-286

rent introduction of locally maladapted genotypes. The balance between these two effects depends287

on the heterogeneity of the environment which, in turn, depends on the ratio between the period L288

of the fluctuation of the environment and the diffusion coefficient σ. The beneficial effect of a higher289

mutation rate is maximal for intermediate levels of this ratio. Indeed, it is not profitable for the290

pathogen population to mutate often when the environment keeps changing (i.e., L ∼ 0) or when the291

environment changes very slowly (i.e., L → ∞). Several earlier studies obtained similar conclusions292

in non-spatial models where it is possible to show that there is an optimal stochastic switching rate293
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between specialized phenotypes that maximizes the growth rate of a population in a fluctuating en-294

vironment (Kussell and Leibler 2005; Lachmann and Jablonka 1996). In all these different scenarios,295

the introduction of genetic variation provides a way to “pass the baton” between different specialist296

genotypes and allows the population to exploit more efficiently a fluctuating environment.297

As expected from earlier theoretical studies (Brunet and Derrida 1997; Griette, Raoul, and Gandon298

2015; Mueller, Mytnik, and Quastel 2011; Snyder 2003), demographic stochasticity lowers the speed299

of the epidemic spread. Most of the results of the deterministic model hold in finite host populations.300

The only notable exception occurs when large values of L can prevent the spread of single-resistance301

genotypes. The input of new mutations may then provide a way to adapt to the new host type. Hence302

the speed of pathogen epidemics may be constrained by both the stochastic nature of the demographic303

process and the stochastic nature of the mutation events occurring at the edge of the epidemic. Several304

earlier studies have shown how the increased intensity of genetic drift in expanding populations could305

result in an “expansion load” due to the accumulation of deleterious mutations (Hallatschek and306

Nelson 2010; Peischl, Kirkpatrick, and Excoffier 2015). In our model, however, deleterious mutations307

at some location (e.g. genotype a in host type B) are adaptive at other locations (e.g. in host type A).308

It would be interesting to study the effects of finite population size in a more realistic model allowing309

for the accumulation of unconditionally deleterious mutations.310

Our models can be used to make practical recommendations regarding the manipulation of the311

spatial structure of the host population to limit the speed of pathogen epidemics. The spatial structure312

of the host population can be manipulated by mixing hosts with different levels of resistance to313

the pathogen. This variation in host resistance can either be due to genetic heterogeneity among314

(e.g. resistant crop varieties), to immunological heterogeneity (e.g. vaccination) or other therapeutic315

interventions (e.g. the use of drugs against the pathogen). Earlier studies have analysed the impact316

of the local manipulation of the heterogeneity of the environment on the adaptation of pests and317

pathogens (Comins 1977; Débarre, Bonhoeffer, and Regoes 2007; Lenormand and Raymond 1998;318

Park et al. 2015; Raymond 2019). In particular these models have determined the critical area size of319

host resistance above which adaptation to the host does not occur because local selection is swamped320

by the influence of migration. The present study expands these earlier studies that focused on the321

migration-selection equilibrium and examines transient dynamics of adaptation in the presence of322

two types of host resistance. Hence, our analysis may be particularly relevant in agriculture where323

multiple resistance varieties may be used to limit pathogen spread (Djidjou-Demasse, Moury, and324

Fabre 2017; Rimbaud et al. 2018a,b, 2021). If the objective is to limit the speed of the epidemic325

spread, a lower value of L should be recommended. Lower L values imply that a spreading epidemics326
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is exposed to a more variable environment. This prevents the pathogen to specialize to a specific327

environment and, consequently, to speed up in a favourable environment. Interestingly, fine-scale328

environmental heterogeneity (low L values) are also expected to reduce the probability of pathogen329

emergence (Chabas et al. 2018). This fine-scale heterogeneity, however, may promote the spread of330

generalist and multi-adapted pathogens. Those generalist pathogens are likely to spread more slowly331

because of the potential fitness cost associated with the acquisition of additional mutations. But332

additional compensatory mutations (not considered in our model) may restore the competitivity of333

generalist pathogens against specialist pathogens. In other words, the optimal deployment of control334

measures in space varies with the forecast horizon. Our model helps clarify the consequences of these335

interventions on the short term epidemiological dynamics (the speed of the spreading epidemic) as336

well as the evolutionary dynamics of the pathogen population.337

Several experimental studies have monitored and quantified the spread and the evolution of a338

bacteria in laboratory conditions (Baym et al. 2016; Deforet et al. 2019). In particular, the MEGA-339

plate experiment of Baym et al followed the spread of Escherichia coli in a spatially heterogeneous340

environment characterised by increasing concentrations of antibiotics. This fascinating experiment341

allowed to visualize pathogen spread and evolution in real time. This experimental procedure could342

be used to test some of our predictions. For instance, we could monitor the influence of the scale of343

spatial heterogeneity with a manipulation of the parameter L in the MEGA-plate. We hope that the344

present theoretical framework may stimulate an experimental validation of our theoretical predictions345

using experimental evolution of microbes in spatially heterogeneous environments.346
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Figure 1: Schematic presentation of the evolutionary epidemiology model and the spa-
tial heterogeneity of the environment. Top figure: diagram of the compartimental model. S
represents susceptible hosts, Ia (resp. Ib, Im) represents hosts infected by single-adapted genotype a,
which is only able to infect host type A (resp. single-adapted genotype b only able to infect host type
B, and the multi-adapted pathogen able to infect both types of hosts). In dashed we have represented
mutations that typically happen at a much lower rate than transmissions. Bottom figure: Values of the
intrinsic growth rates x 7→ ra(x) = βa(x) − α, x 7→ rb(x) = βb(x) − α, x 7→ rm = βm − α as a function
of the spatial variable x ∈ R, where, for x ∈ (0, L), βa(x) = 2r1(0, L

2 )(x) while βb(x) = 2r1( L
2 ,L)(x),

and α = r. The maximal growth rate of the single-adapted genotypes is assumed to be higher than
the growth rate of the multi-adapted genotype: r ≥ rm. The red (resp. green) area represents the
locations x ∈ R where hosts of type A (resp. B) are present.
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Figure 2: Impact of the mutation rate µ on the propagation speed of a coalition of
the two specialist pathogen types, for the determinist model. We plot the speed ca of a
single specialist genotype (red line) and the speed ca+b of a coalition of both specialist genotypes
propagating together (orange lines) when µab = µba = µ (with µam = µbm = 0). The final values
for ca are extrapolated (from L = 2000 inclusive). The black arrows indicate the values of Lc for the
different rates of mutation (see equation (4)). Parameters: σ = 1, r = 1, and the functions βa(x),
βb(x), ra(x) and rb(x) are as in Fig. 1.
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Figure 3: Propagation speed when only one specialist genotype is present (ca), when
both specialist genotypes are present (ca+b with µab = µba = µ) and when all the three
pathogen genotypes are present (ca+b+m with µij = µ, ∀ i, j ∈ {a, b, m}). Top figure: speed of the
epidemic in the deterministic model (1) against the period L for the coalition of specialist genotypes
(orange line: ca+b with µab = µba = µ), the multi-adapted genotype alone (blue line: cm) and the full
model with both the specialist genotypes and the multi-adapted genotype (purple line: ca+b+m with
µij = µ, ∀ i, j ∈ {a, b, m}). Bottom figure: speed of the epidemic in the stochastic model with N = 100
and δx = 0.1. Parameters: r = 1, rm = 1

16 , σ = 1, µ = 0.01, βm = 1 + 1
16 , and the functions βa(x),

βb(x), ra(x) and rb(x) are as in Fig. 1.
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Figure 4: Effect of the mutation rate µ on the propagation speed of the epidemics when
all three pathogen types are present (ca+b+m with µij = µ, ∀ i, j ∈ {a, b, m}). Top figure:
deterministic model. Bottom figure: stochastic model with N = 100 and δx = 0.1. Parameters: σ = 1,
rm = 1

16 , r = 1, βm = 1 + 1
16 , and the functions βa(x), βb(x), ra(x) and rb(x) are as in Fig. 1.
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Figure 5: The five epidemic profiles. Composition of the population at the edge of the front
(colors), and behind the front (hatches), as a function of rm and L with µij = µ, ∀ i, j ∈ {a, b, m}.
See also Fig. 6 for the description of these different epidemic profiles obtained with the parameters
noted i to v in the top figure . Top figure: deterministic model. Bottom figure: stochastic model with
N = 100 and δx = 0.1. Parameters: σ = 1, µ = 0.01, r = 1, βm = 1 + rm, and the functions βa(x),
βb(x), ra(x) and rb(x) are as in Fig. 1.
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Figure 6: Composition of the pathogen population. For the parameters (L, rm) noted i to v in
Fig. 5: (1, 0.5), (10, 0.7), (10, 0.5), (10, 0.25), (50, 0.5). Other parameters r = 1, µ = 0.001, βm = 0.5,
and the functions βa(x), βb(x), ra(x) and rb(x) are as in Fig. 1.
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