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Abstract16

Climatic spatial gradients often result in the evolution of locally adapted phenotypic clines. Such17

gradients should shift through time under climate warming. Species can then persist (i) by tracking18

through space the range of climatic conditions to which they are already adapted to, (ii) by staying19

put and evolving new trait values allowing adaptation to new conditions, or (iii) by any combination20

of migration and evolution, with varying consequences for the position of the rear and leading edge21

of their range in a changing climate. We here use previously developed mathematical results to22

predict the speed at which such rear and leading edge move in an asexual species adapting to an23

environmental gradient that shifts in space and time. We jointly model changes in the distribution of24

the species abundance through space and changes in the distribution of phenotypic values defining its25

climatic niche. As in previous studies, we find that there is a critical climate change velocity beyond26

which the species cannot persist. We can however define several other types of critical climate change27

velocities, which allow predicting when the leading edge shifts faster or slower than climate change,28

and when the species persists at its rear edge. We derive predictions along a one-dimensional spatial29

gradient and in two dimensions. In the latter case, we predict that the direction of faster spatial30

spread at the edge of the range is not always the direction of faster climate change. We also predict31

when a local disturbance in the latitudinal climatic gradient, e.g. generated by a mountain, can stop32

the spread of the population despite climate warming. Conversely, local improvement of population33

growth, as may occur in protected areas, can allow persistence at the rear edge under faster rates of34

climate changes.35
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Impact statement: The geographical distribution of many species is already altered by contemporary36

climate change. Observed spread towards cooler climates and extinction at the warm margin of the range37

are consistent with the expectation that species track the climatic conditions to which they are already38

adapted. Yet, despite this global signal of climate change impact on biodiversity, our understanding of39

what drives the large diversity in observed range shifts remains limited. Some species indeed spread faster40

or slower than expected based on the idea of climate tracking and range shifts patterns frequently differ41

between the warm and cold margins of the species range. We here use a mathematical model to predict42

how evolutionary adaptation to new climates along with climate tracking may modify our expectations43

regarding range shifts under climate warming. Our model suggests that shifts in the position of the44

cold margin of the range will be typically faster than shifts at the warm margin, consistently with many45

observations. We also predict that different species can survive climate warming through a diversity of46

patterns combining range shifts and niche evolution: some spread faster and others slower than climate47

change at their cold margin, some persist and others die out at their warm margin, depending on their48

dispersal capacity, evolutionary potential and speed of climate warming. Our simple mathematical49

model thus shows that rapid evolution of species climatic niches can already generate a large diversity of50

types of range shift in a warming climate and that the expectation of a simple climate tracking may be51

too simplistic, underestimating the resilience capacity at the warm margins and either overestimating or52

underestimating the capacity for spread at the cold margin, with important consequences for management53

of biodiversity in a changing climate.54
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1 Introduction55

Changes in spatial distribution consistent with impacts of contemporary climate change, such as poleward56

and upslope range shifts, have now been documented for a large number of species in many ecosystems57

(see Chen et al., 2011; Lenoir and Svenning, 2015; Lenoir et al., 2020). Direction, speed and drivers of58

these shifts are however highly idiosyncratic: they vary among species, but also, for the same species,59

between different range margins, and depending on whether changes in abundances within the range or60

changes in the position of range limits are considered. Fossil records similarly show large variation in61

patterns and speeds of species range shifts following periods of past climate change (Willis and MacDon-62

ald, 2011; Ordonez, 2013). In both contemporary and past warming periods, velocities at the trailing63

edge are often much lower than at the leading edge (Willis and MacDonald, 2011; Ordonez, 2013; Lenoir64

and Svenning, 2015). The speed of changes at both margins is also frequently lower than expected based65

on climate change (Lenoir and Svenning, 2015), but changes can also be faster than (Ordonez, 2013), or66

in the opposite direction to (Lenoir et al., 2010), shifts in temperature isotherms. This large variation67

remains largely unexplained. Attempts to predict patterns and speed of range shifts from species traits68

in meta-analyses of empirical data (Angert et al., 2011; MacLean and Beissinger, 2017; Platts et al.,69

2019; Lenoir et al., 2020; Beissinger and Riddell, 2021) have been met with moderate success. Many70

species in particular seem to persist in localities where the climate has become unfavourable, a pattern71

described as a climatic debt (Bertrand et al., 2016; Gaüzère et al., 2017). While this persistence may72

only be transient, hiding future local extinction, paleorecords of plant species distributions offer a more73

optimistic view, suggesting an important role for microrefugia and evolutionary adaptation in helping74

species holding on at their rear edge through warming periods (Willis and MacDonald, 2011). Our aim75

here is to develop new mathematical models to better understand and predict patterns of species range76

shifts in the context of climate change, when species can both track favourable climate through space77

and evolve new thermal niche limits. Our hypothesis is that a better understanding of evolutionary78

responses to climate change and their interaction with spatial spread should help better predicting the79

observed diversity of range shifts in the context of contemporary and past climate changes.80

The rich theory about mathematical models of spatial spread has been used to generate predictions81

about spatial shifts in distributions in the context of climate change. Simple models of diffusion in82

homogeneous space (Fisher, 1937; Kolmogorov et al., 1937) predict that life history traits affecting83

the dispersal distance and the population growth rate at low density should determine the velocity of84

expanding margins, a prediction having received weak empirical support in the context of contemporary85

climate change (Angert et al., 2011). Spatial spread in the context of climate change differs from the86

spread of an invasive species in an homogeneous environment in that the climate varies through space87

4



and the species can survive only within its climatic niche. Models of “moving habitat” (Potapov and88

Lewis, 2004; Berestycki et al., 2009; Cobbold and Stana, 2020) describe such a niche with fixed limits89

and predict that the rate of both spread of the leading edge and contraction of the trailing edge are90

set by the climate change velocity. Above a critical climate velocity, the species fails to track in space91

its preferred climate and goes extinct globally. Consistently with these predictions, climate velocity is92

tightly linked to the velocity of movement in some species, but this relationship is much more loose for93

others (Chen et al., 2011; Lenoir et al., 2020).94

Several important biological factors are left out by the previous mathematical models and may explain95

why they fail at predicting the observed diversity of range movements in response to climate change.96

These models ignore the existence of genetic variability in the adaptation to local climate within the97

species range (see Peterson et al., 2019) and the ability of species to evolve new niche limits. There is98

increasing recognition that spatial spread can be slowed down or accelerated by fast evolution accompany-99

ing expansion in the context of climate change (Diamond, 2018; Nadeau and Urban, 2019; Wellenreuther100

et al., 2022), as exemplified by the evolution of higher dispersal capacity or higher mutation load at the101

expanding edge (Peischl and Gilbert, 2020). Joint evolution of local adaptation and spatial spread has102

also to be considered when expanding species adapt to environments that are variable in space, such103

as climatic gradients across elevation or latitude (Davis et al., 2005). Local adaptation describes the104

evolution of local values of phenotypic traits that confer high fitness in a specific locality within the105

range, but not in other parts of the range, and is a pervasive feature of natural populations (Peterson106

et al., 2019). Evolution of locally-adapted flowering phenology seems in particular to have facilitated the107

spread of several plant species colonizing climatic gradients in the current context of climate warming108

(Colautti and Barrett, 2013; Lustenhouwer et al., 2018). A number of simulation models have described109

the joint evolution and spread of one or several species along climatic gradients shifting in space and time110

due to climate change (e.g. Kubisch et al., 2013; Hargreaves et al., 2015; Thompson and Fronhofer, 2019;111

Weiss-Lehman and Shaw, 2020; Moran, 2020), reaching quite different conclusions. As these simulation112

models differ in many specific assumptions (see discussion in Moran, 2020), it is difficult to lay out the113

general principles and expectations about the effect of evolution of local adaptation on patterns of range114

changes in the context of climate change.115

Mathematical models have also been developed to describe a species spreading in geographical space116

and evolving in phenotypic space along some environmental gradient, with different phenotypic values117

maximizing population growth rates at different points along this gradient, and a shifting gradient118

mimicking climate change (Pease et al., 1989; Polechová et al., 2009; Duputié et al., 2012; Aguilée et al.,119

2016). These models are related to a larger body of evolutionary biology theory (Kirkpatrick and Barton,120

1997; Case and Taper, 2000; Polechová and Barton, 2015; Polechová, 2018), connecting key questions121
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about the evolution of species ranges and of niches. These models assume sexual reproduction and122

predict three possible ultimate outcomes when a species adapt to such a shifting spatial gradient: (i) the123

species may go extinct everywhere, (ii) it may evolve a finite range, which shifts with climate change,124

with the same speed at the leading and trailing edge, (iii) the species may ultimately spread and adapt125

to the entire gradient. Although these models allow change in niche limits, some predict that climate126

change will not cause niche evolution, but rather the spatial tracking of the favourable climate through127

range shifts as fast as climate change (Pease et al., 1989; Duputié et al., 2012). Yet, this prediction128

does not appear to be particularly robust, as, for instance, relaxed competition at the front may result in129

leading edge shifting faster than climate change and the niche shifting towards to cool climates (Polechová130

et al., 2009). Conversely, the model by Aguilée et al. (2016), which incorporates pollen dispersal, shows131

that species can persist under climate warming by spreading in space more slowly than the climate and132

adapting to warmer temperature. Such models are far from being fully understood from a mathematical133

standpoint (Champagnat and Méléard, 2007; Mirrahimi and Raoul, 2013). Indeed, sexual reproduction134

complicates the mathematical analysis and analytical predictions about spread rates were obtained only135

in situations where the leading and trailing edges shift at the same speed. We therefore lack results136

about spread rates when the species expands its distribution in the changing climate.137

Models of joint spread in space and evolution of the niche in asexually reproducing organisms have138

been developed recently and are more amenable to mathematical analysis (Alfaro et al., 2013; Berestycki139

et al., 2016; Alfaro et al., 2017). In these models, a species can both track its favourable climate in space140

by dispersal and/or track the changing climate in time by evolving new phenotypic values by mutation,141

without the complicating effect of recombination. With asexual organisms, the finite range scenario set142

by the maladaptive swamping effect of gene flow at range margins described in Kirkpatrick and Barton143

(1997) does not occur and only two outcomes are predicted: the species either goes extinct everywhere or144

spread throughout space, but with a speed that can be fully characterized. The impact of climate change145

on the spread and adaptation of asexual organisms is also of interest in itself, since a large and important146

fraction of biodiversity (microbes in particular) reproduces mostly in a clonal manner. Many experimental147

tests of theoretical predictions about joint spatial spread and evolution furthermore use model clonal148

organisms in miniaturized landscapes (e.g. Bell and Gonzalez, 2011; Fronhofer and Altermatt, 2015;149

Larsen and Hargreaves, 2020). As the dynamics of range changes may differ between asexual and sexual150

organisms (Moerman et al., 2020), one therefore needs to produce theoretical predictions for the former151

to better interpret the results of these experiments.152

We here build on recent mathematical results obtained in the case of asexual organisms colonizing a153

shifting spatial linear gradient (Alfaro et al., 2017), to discuss their biological implications in the context154

of climate change. We wish to predict (i) the critical velocity of climate change above which the species155
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goes extinct globally, (ii) if it does not go extinct globally, how fast it expands at its cold margin, (iii)156

whether it goes extinct locally at its warm margin, and how long it persists there (predicting the extent157

of the climatic debt). We also use the model to examine how adapting to local perturbations in the158

environmental gradient may block the spread of the species towards cooler climates and, conversely, how159

local improvement of habitat quality at the warm margin may help the species holding on its previous160

range. We generalize our predictions to the case of a species spreading in two dimensions.161

2 Materials and methods162

2.1 Model for a population in a 1D linear environment163

We consider the density of an asexual population n(t, x, y) at time t ≥ 0, structured by a spatial164

variable x ∈ R (e.g. latitude) and a phenotypic trait y ∈ R (e.g. cold tolerance). It changes through165

four processes: dispersal, mutation, growth and competition. Dispersal and mutation are modelled166

by diffusion operators. We assume that the growth rate of the population at low density r(t, x, y)167

declines as its phenotype y departs from a local optimum yopt(t, x), which varies across space along some168

environmental gradient (as temperature varies with latitude) and in time (as temperature warms due to169

climate change):170

r(t, x, y) = rmax(x)− 1

2Vs
(y − yopt(t, x))

2
, (1)171

where rmax(x) is the maximal growth rate at x, and 1
2Vs

> 0 the strength of stabilizing selection172

around the optimal phenotype. In most sections (local perturbations are explored in Section 2.2), we173

further assume that the maximal growth rate is constant throughout space (rmax(x) = rmax) and that174

the optimal phenotype varies linearly through some dimension of space, with such optimal value also175

shifting in time at a constant speed due to climate change. More precisely,176

yopt(t, x) = b(x− ct), (2)177

where b describes the slope of the environmental gradient (how the optimal phenotype changes in space)178

and c ≥ 0 describes the climate change velocity (how fast the location where a given phenotype is optimal179

shifts with time due to climate warming). We assume throughout that b > 0 and c ≥ 0, but other180

scenarios of biological interest can be described by our model through an appropriate transformation181

of coordinates. Hence, the growth rate r(t, x, y) is negative outside a strip centered on an optimal line182

y = b(x− ct). Finally, we consider a logistic regulation of the population density such that competition183

depends on the total local density, but not on phenotypic resemblance among competitors.184
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The dynamics of n(t, x, y) is described by the non local reaction-diffusion model:185

∂tn(t, x, y)− σ2

2
∂xxn(t, x, y)− µ2

2
∂yyn(t, x, y) =

(
r(t, x, y)− 1

k

∫
R
n(t, x, y′) dy′

)
n(t, x, y), (3)186

for (t, x, y) ∈ R+ × R2. Here σ > 0, µ > 0 describe the diffusion rates in geographical and phenotypic187

space, respectively. For simplicity, we will denote σ and µ > 0 as the dispersal and mutation rates. The188

quantity k > 0 is the local (constant) carrying capacity.189

Our first aim is to determine the maximal climate change velocity that the species can endure,190

thanks to a combination of dispersal and evolution. In case of survival, at time t ≥ 0 and location x, the191

individual traits are concentrated around the optimal phenotypic trait, so that we can provide a simple192

macroscopic description of geographical distribution of the population by an interval (x−(t), x+(t)): if193

x ∈ (x−(t), x+(t)), the population is present in significant number and individual traits are close to194

yopt(t, x), while if x /∈ (x−(t), x+(t)) the population is considered in too low numbers to be detectable.195

The position x−(t) thus corresponds to the warm edge of the species distribution, while x+(t) is the196

position of the cool edge of the geographical distribution. The core of the range at mid distance between197

x−(t) and x+(t) is denoted by x0(t). Our second aim is to fully characterize the speed at which these198

range edges and core shift in time.199

We similarly define niche limits as y−(t) and y+(t), representing the most extreme phenotypic values200

found within the range. For instance, y−(t) would be the lowest cold tolerance (the warm niche limit),201

found at the warm edge of the range, and y+(t) the highest cold tolerance (the cool niche limit) at the202

cold edge of the range. The phenotypic value characterizing the center of the niche is noted y0(t). We203

will characterize the speed at which these niche limits and centre change in time (i.e. niche evolution).204

Characterizing the velocity of these shifts in range and niche limits will allow us to define four scenarios205

of responses to climate change leading to population persistence (see Figure 1). We will examine under206

which conditions each of these scenarios occur and how they depend on, among others, the mutation207

and dispersal rates.208

2.2 Model for a population in a more complex 1D environment209

We consider more general situations with local environmental heterogeneity, affecting either the maximal210

growth rate or the optimal phenotype. In these cases, the bounds x−(t) and x+(t) do not move with211

constant speed any longer.212

Impact of an obstacle. We consider the case where the population needs to cross an obstacle, e.g. a213

mountain, to expand towards the pole. The higher elevation implies colder temperatures, hence a steeper214

spatial gradient going up-slope than the latitudinal gradient. To keep on expanding towards the pole,215
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the species must also go down-slope, after having colonized the top elevation, where the environmental216

gradient changes sign locally: the population then needs to adapt to warmer (and not cooler) temperature217

while colonizing downhill (see Figure 2). To model this, we consider the growth function (1), with the218

optimal trait not given by (2) but219

yopt(t, x) = b(x− ct) + ϕ(x), (4)220

with ϕ(x) ≥ 0 related to the elevation at x. Our question is: when is propagation towards the pole221

blocked by this obstacle?222

Impact of a refuge. A second scenario is the presence of a refuge in a given location. We describe223

these enhanced growth conditions through a function ψ(x) ≥ 0, which is positive on an interval. The224

growth function in (3) is then225

r(t, x, y) = rmax + ψ(x)− 1

2Vs
(y − yopt(t, x))

2
).226

We consider a species which, in the absence of the refuge, would survive, but would escape towards227

the cooler part of the environmental gradient, thus disappearing from its original location, see Section228

3.1 and Figure 1C-D. Our question is: can we avoid extinction at the warm edge by creating a local229

refuge (see Figure 3)?230

2.3 Multidimensional version231

To describe the dynamics of a population in a 2D environment, that is x = (x1, x2) ∈ R2, we consider232

an extension of model (3), namely233

∂tn(t,x, y)− σ2

2
∂x1x1

n(t,x, y)− σ2

2
∂x2x2

n(t,x, y)− µ2

2
∂yyn(t,x, y)234

=

(
r(t,x, y)− 1

k

∫
R
n(t,x, y′) dy′

)
n(t,x, y), (5)235

236

for (t,x, y) ∈ R+×R2×R, where the linear environmental gradient depends only on the second coordinate237

x2 of x = (x1, x2) (e.g. temperature varying with latitude but not longitude), that is238

r(t,x, y) = rmax −
1

2Vs
(y − yopt(t,x))2, yopt(t,x) = b(x2 − ct).239

In this 2D context, the population is present on a set and the propagation of the range is anisotropic.240

We will determine in which the direction the propagation is the fastest.241
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3 Results242

3.1 Dynamics of the population in a 1D linear environment243

Conditions for survival or extinction. In S1, we show that, in the absence of climate change (c = 0),244

the survival or extinction of the population is decided by245

R := rmax −
1

2

√
µ2 + b2σ2

Vs
, (6)246

which can be seen as the effective growth rate of the population at low density. The term 1
2

√
µ2+b2σ2

Vs
247

can be interpreted as the fitness load caused by mutation and by dispersal along the spatial gradient.248

Indeed, both mutation and dispersal introduce individuals with non optimal phenotypes in any location.249

The effect of dispersal on the fitness load depends on both the typical dispersal distance σ and how fast250

selection changes when moving along the environmental gradient, as scaled by the slope b. If R < 0, the251

population is unable to survive, even without climate change. If R > 0, the population can survive if252

the speed of climate change is not too large. The critical speed of climate change is253

c∗∗ :=

√
2

b

√√√√√
rmax − 1

2

√
µ2 + b2σ2

Vs

 (µ2 + b2σ2) =
√

2R

√
σ2 +

µ2

b2
. (7)254

Climate change slower than c∗∗ (that is 0 ≤ c < c∗∗) allows the population to survive, but climate255

change faster then c∗∗ (that is c > c∗∗) leads to extinction. Formula (7) shows that the critical speed c∗∗256

for survival is a non-monotone function of σ and of µ (see also Figure 6): in one hand, increasing dispersal257

or mutation should allow better chances of survival because of, respectively, an increased capacity to258

track the shifting climate in space, and a faster evolution towards a greater thermal tolerance; on the259

other hand, higher mutation and dispersal increases the fitness load in every location. In our model,260

mutation and dispersal play similar roles on the critical speed for survival (i.e. c∗∗ is a function of261

µ2 + b2σ2). They however have distinct effects on the speed at which the warm and cold edges of the262

range and niche change through time when the population persists.263

Dynamics of the range. We consider a situation where the population is able to survive the climate264

shift, i.e. R > 0 and 0 < c < c∗∗. Then, we find that the bounds x−(t) and x+(t) move at the constant265

speeds:266

dx−

dt
=

b2σ2

µ2 + b2σ2
c− σµ b

µ2 + b2σ2

√
(c∗∗)2 − c2, (8)267

268

dx+

dt
=

b2σ2

µ2 + b2σ2
c+ σµ

b

µ2 + b2σ2

√
(c∗∗)2 − c2. (9)269
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The core of the range shifts towards the cooler part of the environmental gradient (e.g. the pole) as270

dx0

dt
=

b2σ2

µ2 + b2σ2
c. (10)271

This speed is always positive, but smaller than the climate change velocity (see purple lines in Figures 4272

and 5). It approaches the speed of climate change as the mutation rate becomes small compared to the273

dispersal rate.274

Dynamics of the niche. Since an individual can only survive at a given location if its phenotypic275

trait y is close to the local optimal phenotypic trait yopt(t, x), the spatial dynamics of the population is276

coupled to a dynamics of the niche, whose bounds move at the constant speeds:277

dy−

dt
= b

(
dx−

dt
− c
)
,

dy+

dt
= b

(
dx+

dt
− c
)
. (11)278

The center of the niche evolves through time to be increasingly warm-adapted, as279

dy0

dt
= − bµ2

µ2 + b2σ2
c (12)280

is negative, decreasing when the climate change velocity or the mutation rate increase: evolution of the281

niche is faster when climate change is faster and when mutation rate is increasing relatively to dispersal282

(see purple lines in Figures 4 and 5).283

Can the species track the shifting climate at the cold edge? Formula (9) shows that the cold284

edge of the population range always shifts towards the pole (dx
+

dt > 0), but it does so either slower or285

faster than the climate (see Figure 4): the cold edge shifts faster than climate (0 ≤ c < dx+

dt ) if and only286

if c < c∗ < c∗∗, where287

c∗ :=

√√√√√2

rmax − 1

2

√
µ2 + b2σ2

Vs

σ2 = σ
√

2R. (13)288

In the absence of climate change and if R > 0, the population will ultimately expand and adapt289

to the entire gradient, with some speed of range expansion dx+

dt =
√

2R σµ√
µ2+b2σ2

and niche expansion290

dy+

dt = bdx
+

dt (see Figure 4), which are limited by the capacity to adapt to different environmental291

conditions encountered when colonizing the climatic gradient. In particular, when the mutation rate is292

small, both the speed of range and niche expansion are slow. Climate change has a dual effect. In the293

one hand, the shifting climate makes conditions at the cool edge more similar to those already within the294

species niche, which tends to accelerate spatial spread at the cool edge of the range dx+

dt . On the other295

hand, the speed of niche evolution at the cold margin dy+

dt always declines with increasing velocity of296
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climate change since it is harder to adapt to cooler climates when the climate warms rapidly (see Figure297

4b). This slower adaptation to cool climates tends to slow down range expansion towards the pole dx+

dt .298

The former effect dominates when climate change is not too large (0 ≤ c < c∗), but the speed of range299

expansion towards cool climate declines with increasing velocity of climate change when c > c∗ due to300

constraints on adaptation at the cool edge of the niche. Interestingly, the speed of spatial propagation301

towards colder latitudes thus does not always increase with the speed of climate change (see Figure 4a).302

Notice that the cold edge of the niche evolves to adapt to cooler temperatures (that is dy+

dt > 0, see303

equation (11)), despite climate warming, if and only if 0 ≤ c < c∗, that is when the species range edge304

moves towards the pole faster than climate change. Conversely, when c > c∗, that is when the species305

spreads slower than climate change towards the pole, we have dy+

dt < 0, meaning that the population306

gradually loses the ability to grow in the cooler part of its initial niche. Hence, if c ∈ (c∗, c∗∗), the307

population survives, shifts toward the pole, but fails to maintain its initial niche: the survival of the308

population then relies on its continual adaptation to warmer temperatures through mutations.309

The speed of propagation towards the pole and the speed of niche expansion towards cooler climates310

first increase with increasing dispersal and mutation rates, but both speeds reach a maximum for some311

specific value of dispersal and mutation rates, above which propagation and niche expansion towards312

cool climates is slowed down by increasing dispersal and mutation loads (see Figure 5).313

Can the species persist at the warm edge? When mutation is allowed (µ > 0), the warm edge314

of the range always shifts towards the pole slower than the climate, i.e. dx−

dt < c. Our model predicts315

continuous adaptation of the warm edge of the niche to warmer temperatures, as dy−

dt < 0 always holds.316

Yet, the speed of adaptation is not necessarily sufficient to persist indefinitely at the warm edge of the317

range. Indeed, if 0 ≤ c < c∗∗, the speed of the warm edge of the population range dx−

dt can be either318

positive or negative, see (8). If dx
−

dt > 0, the population will disappear from the warmer part of its range319

and both the warmer and cold edge of the range will shift towards the poles, however at different speeds.320

This condition is met if the speed of climate change is higher than a critical climate velocity, but lower321

than the climate velocity causing extinction, i.e. when c] < c < c∗∗, where322

c] :=
µ

b

√√√√√2

rmax − 1

2

√
µ2 + b2σ2

Vs

 =
µ

b

√
2R. (14)323

On the contrary, if climate change is not too fast and c < c] < c∗∗, then dx−

dt < 0 and the warm edge324

of the range expands towards the opposite direction to climate change, thanks to mutations allowing325

fast evolution of the warm niche limit. The species can then persist in its initial range and holds on the326

previously warm edge of its distribution.327
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The speed at which the warm margin of the range shifts toward the pole always increases when328

climate change is faster (see Figure 4a). However, the speed at which the warm margin of the niche329

adapts to warmer temperature first increases when climate change is faster (dy
−

dt is more negative), but330

it decreases when climate change is too fast (when c > c]) and the species disappears from its warm edge331

(see Figure 4b).332

Both mutation and dispersal have antagonist effects on the speed of shift of the warm range margins.333

When dispersal or mutation are low and increase, it helps the population holding on its warm margin334

for longer. Yet, beyond some critical value, increasing dispersal or mutation has the reverse effect,335

making persistence at the warm margin more difficult. Interestingly, the dispersal and mutation rates336

maximizing the speed of propagation towards the pole differ from the values maximizing the persistence337

at the warm margin: in particular the dispersal rate maximizing the expansion towards the cool part338

of the gradient is greater than that minimizing retraction in the warm part of the gradient (see Figure339

5a), while the mutation rate beyond which expansion towards the pole is slowed down is smaller than340

the value allowing the fastest expansion towards the equator (see Figure 5c).341

Four scenarios of persistence under climate change. Depending on the values of the different342

parameters, both c∗ < c] and c] < c∗ may happen (see Figure 6). As a consequence the four scenarios343

described in Figure 1 are possible.344

3.2 Dynamics of the population in a more complex 1D environment345

3.2.1 Impact of a mountain346

We consider a population expanding towards colder latitudes, and reaching a mountain. We assume347

R > 0 and 0 < c < c∗∗, so that the population would survive in a linear environment and ask whether a348

local change in the slope of the environmental gradient b+ ϕ′(x) (see equation (4)) can stop the spatial349

spread. We show in Section S2.3 that different scenarios can lead to blocking at position xblock.350

Spread halted when going uphill. Going uphill, blocking can happen if the population encounters a351

climatic gradient locally too steep to allow spread in a warming climate. This occurs at xblock when the352

speed of climate change is greater than353

c∗∗ϕ′(xblock) =

√
2

b

√√√√√
rmax − 1

2

√
µ2 + (b+ ϕ′(xblock))2σ2

Vs

 (µ2 + (b+ ϕ′(xblock))2σ2). (15)354

Expression (15) shows that a local increase in the slope of the gradient (as a steepened climatic gradient355

going uphill, see the blue line in Figure 7) has antagonistic effects on the capacity of the population356
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to keep spreading. In one hand, a steeper climatic gradient facilitates tracking the shifting climate in357

space, as shorter dispersal is then necessary to reach a favorable climate. On the other hand, a steeper358

climatic gradient generates a higher migration load depressing the population growth rate, even in a359

constant climate. As a result of these antagonistic effects, the critical climate change velocity has a local360

maximum for some intermediate value of the local environmental gradient b+ ϕ′(xblock) (see Figure 7).361

Assuming that the population was able to spread until it hits the obstacle, it can be stopped, for the362

same climate change velocity, by a locally heightened climatic gradient going up-slope, because of the363

too large migration load there.364

Spread halted when going downhill. Two different kinds of scenarios can halt the spread of a365

population that would have managed to reach the top of the obstacle, going downhill (ϕ′(xblock) < 0).366

In this case, the effect of the obstacle is to decrease the local slope of the environmental gradient, as b367

and ϕ′(xblock) have opposite signs.368

The first scenario corresponds to the case where the presence of the obstacle locally weakens the369

latitudinal gradient, but does not change its sign (we still have b+ϕ′(xblock) > 0). The climate still cools370

when spreading towards higher latitude, but less so when going down-slope. The condition c > c∗∗ϕ′(xblock)371

may then also occur when the local environmental gradient is small enough (see the green line in Figure 7).372

The environment becomes homogeneous and dispersal does not allow tracking the climate shift, which373

halts the spread of the population. In the latter case, a high mutation rate helps the population spread374

through these areas with shallow gradients under climate change (compare Figure 7a and Figure 7b).375

The second scenario corresponds to the case where the obstacle is very steep with respect to the376

latitudinal gradient and locally inverts the local climatic gradient: b + ϕ′(xblock) < 0, i.e. the climate377

warms when going downhill. Even if the population has managed to spread uphill and the climate change378

velocity is below c∗∗ϕ′(x) for all location x, the population spread may then still be blocked when going379

downhill. We show that, if ϕ′(xblock) < −b, the population is only able to progress towards larger x if380

0 ≤ c < c♦
ϕ′(xblock)

, where381

c♦
ϕ′(xblock)

=
√

2b

√
(b+ ϕ′(xblock))2σ2

µ2(µ2 + (b+ ϕ′(xblock))2σ2)3
+

1

µ2 + (b+ ϕ′(xblock))2σ2
382

×

√√√√
rmax −

1

2

√
µ2 + (b+ ϕ′(xblock))2σ2

Vs
. (16)383

384

Figure 7 (see the red line) shows how this second critical speed decreases when the local slope of the385

environmental gradient is more negative, going downhill. This blocking effect emerges from the double386

challenge of adapting to an inverted climatic gradient in a warming climate, locally making the situation387
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at the leading edge more similar to that at the warm edge of the range.388

3.2.2 Impact of a refuge389

We assume R > 0 and c] < c < c∗∗ so that the population succeeds to survive, but the rear edge of390

its range retreats towards colder temperatures. In the absence of a refuge, the population would then391

disappear from its original range. We however show in S2.4 that the population will succeed to maintain392

its presence in the refuge area at the warm edge of its range if and only if there exists a location xrescue393

such that394

ψ(xrescue) >
1

2

b2

µ2
(c2 − (c])2). (17)395

Unsurprisingly, higher local improvement of the quality of the environment in the refuge is necessary to396

maintain the population at its warm edge under faster climate warming (see Figure 8). Interestingly, the397

dispersal rate has only minor effects on the success of the refuge while increasing adaptation capacity398

through the mutation rate allows persistence in refuges of lower quality, consistently with our previous399

observation that mutation has larger effects on persistence at the warm edge than dispersal.400

3.3 Dynamics of the population in a 2D linear environment401

In a 2D setting, it is possible to show that, at large times, the range will evolve into an ellipse, which402

core, cold margin and warm margin move with the same velocities as in our 1D model (see section S3.2).403

Conditions for population survival, expansion of the niche at the cold edge and persistence at the warm404

margin of the range are therefore the same as previously.405

The main difference introduced by a 2D setting is that the direction of faster spread of the range406

under climate warming does not necessarily correspond to the direction of climate change. To see this,407

let us consider the velocity of spread at every point along the edge of the range. We note as θ ∈ (0, 2π)408

the angle between the direction of range shift at the edge (orthogonal to the range edge at this point)409

and the direction of the climatic gradient, corresponding to the direction of the climate shift. When410

survival occurs, we show in S3.1 that the propagation is anisotropic: the speed in the θ-direction is411

ωθ :=

√
1 + b2

σ2

µ2
sin2 θ × σµ

√√√√2rmax −
√

µ2+b2σ2

Vs

µ2 + b2σ2
− b2c2

(µ2 + b2σ2)2
+ cos θ

b2σ2

µ2 + b2σ2
c. (18)412

Moreover, it turns out that when c∗ < c < c∗∗, the largest ωθ is obtained for θ = 0, i.e. when the413

coldest point of the range shifts slower than climate, the direction of faster spread is also the direction414

of the climate shift. When 0 < c < c∗, the largest ωθ is obtained for some 0 < θ0 <
π
2 , that can be415

exactly characterized. In this regime where the population spreads toward the pole faster than climate,416

15



its range actually spreads faster in some different direction θ0. Notice that θ0 → π
2 as c→ 0.417

In other words: when c = 0, the population spreads faster along a parallel where dispersing individuals418

changing only their longitude encounter an homogeneous environment. When c increases from 0 to c∗419

the fastest direction moves from “along a parallel” to “along a meridian”, that is in the direction of the420

climate change. Then when c increases from c∗ to c∗∗ the faster direction remains “along a meridian”,421

but the actual propagation speed of the population decreases until vanishing when c = c∗∗.422

4 Discussion423

Our model ignores many complexities of the real world affecting range and niche shifts under climate424

change, such as interspecific interactions, sexual reproduction and genetic drift. It however improves425

our understanding of these shifts by showing how allowing niche evolution along with spatial expansion426

is already sufficient to generate a large diversity of range shifts patterns, as observed in data. By427

providing simple closed-form expressions for range margins velocities, our model thus plays the same428

kind of heuristic role as classic reaction-diffusion models of the Fisher-Kolmogorov-Petrovsky-Piskunov429

type (Fisher, 1937; Kolmogorov et al., 1937) have played in structuring our predictions in the context of430

biological invasions when ignoring evolution. The present analytical predictions could in particular serve431

as baseline expectations when a species can both migrate and evolve to adapt to climate change, which432

could be compared to simulations and experimental data in more complex scenarios. Microcosms where433

dispersal and adaptation occur along environmental gradients (Moerman et al., 2020), where conditions434

change in time (Bell and Gonzalez, 2011), and in which the ability to disperse or to evolve can be435

manipulated (Szűcs et al., 2017) offer great opportunities to test our predictions.436

Our model allows examining how evolutionary potential affects the patterns and speed of range437

changes in the context of a warming climate (see Thompson and Fronhofer, 2019, for simulations in438

sexual species). Interestingly, we predict that mutation and dispersal play symmetrical roles on the439

critical climate change velocity above which extinction is certain: to survive a species can track the440

changing climate either in geographical space by dispersing fast, or in phenotypic space by evolving441

fast. Both however have a cost because both mutation and dispersal in heterogeneous environment also442

continuously introduce maladapted genetic variation within populations, which, beyond some point, can443

slow down range expansion. While the population survival depends on the combined effect of mutation444

and dispersal, mutation rates per generation are typically orders of magnitude smaller than dispersal445

rates, which would suggest that mutation affects only marginally the prospects of persistence under446

climate change. Our expressions however show that the effect of dispersal is always scaled by the slope447

of the environmental gradient. When this gradient is relatively shallow compared to the typical dispersal448
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distance, comparing the phenotypic variation introduced by mutation and dispersal becomes less trivial.449

Fast evolution from de novo mutations is commonly observed in experiments with short-lived organisms450

in microcosms, with effects large enough to significantly affect extinction probability or spread rates in451

novel environments (Bell and Gonzalez, 2011; Szűcs et al., 2017). Fast evolution affecting range expansion452

in the context of climate change has also be documented in nature (Lustenhouwer et al., 2018; Colautti453

and Barrett, 2013). While evolutionary potential varies widely between species (in particular because of454

differences in generation time) and fast evolution is unlikely to be general, our model allows predicting455

how this variation may affect the diversity of responses to climate change.456

Despite having similar effects on the overall persistence of the population, mutation and dispersal457

have distinct effects on patterns of range shift at the cool and warm edge of the species distribution.458

When evolutionary potential is non negligible, we predict faster velocities of range change at the cool459

edge than at the warm edge, as often documented in data (Ordonez, 2013), and in simulations with460

mutation and dispersal (Thompson and Fronhofer, 2019): increasing dispersal has a more positive effect461

on the range shift velocity at the cool edge, while increasing mutation allows populations to hold on462

their warm margins for longer and sometimes even to expand towards warmer climate in the direction463

opposite to climate change (as observed by Koide et al., 2022). When evolution permits niche shifts,464

our model also predicts that range shift velocity does not only differ between the leading and trailing465

edge, but also between the edges of the range and the core and that those velocities at the edges differ466

from the velocity of climate change in many situations where the population is still able to survive467

climate warming in the long term. Shifts at the core and edges of species range frequently differ also in468

data (Lenoir and Svenning, 2015). We predict both situations where the leading edge shifts faster than469

climate change, expanding its niche limits towards cooler climates (as observed by Lustenhouwer and470

Parker, 2022), and situations where its spreads slower than climate change, with niche contraction at the471

cool edge (as observed by Pardi et al., 2020). Our model shows that expectations about range shifts do472

differ depending on how and where these shifts are measured, which may explain why different empirical473

studies reach contradictory conclusions about climate tracking (Lenoir and Svenning, 2015).474

Interestingly, we also predict that the velocity of shifts at the leading edge of the range does not475

always increase with the velocity of climate change and that, quite counter-intuitively, range shifts may476

actually slow down when climate change is too fast. A positive linear relationship between local climate477

change velocity and velocity of range shifts is often considered as evidence for impact of climate warming478

on species distributions (Chen et al., 2011; Lenoir and Svenning, 2015; Lenoir et al., 2020); yet, our479

model predicts that this relationship is neither expected to be linear, nor monotone, in general for the480

leading edge.481

Extending our model to spatial spread in two dimensions also revealed that if the core of the range482
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is still expected to shift in the same direction as climate change, this is not necessarily true of spatial483

expansion at the edge: in particular the orientation of fastest spread at the edge is predicted to frequently484

differ from the direction of fastest climate change because strong environmental gradients tend to impede485

spatial expansion. Analysis of local climatic debts in the composition of communities at fine spatial scale486

(Gaüzère et al., 2017) frequently exhibit such discrepancies in the spatial orientation of shifts in local487

climate and species abundances: our model shows that parallel shifts are not necessarily expected, nor488

signal better persistence prospects in the long term.489

Assuming asexual reproduction allowed us to derive explicit mathematical expressions for change in490

range and niche limits. Even though a large fraction of biodiversity affected by climate change does491

reproduce asexually most of the time (e.g. microbes), the majority of empirical data on range shifts in492

nature have been collected for species where sexual reproduction dominates. With sexual reproduction,493

the consequences of dispersal across environmental gradients may differ from those in an asexual species494

because of the phenomenon of “gene swamping”: hybridization between locally adapted genotypes and495

immigrant genotypes makes it harder for selection to get rid of maladapted genes and asymmetric gene496

flow from the core of the range towards the margins can maintain the latter in a permanent state497

of maladaptation and low population size. As a result, while models of spread along environmental498

gradients of a single asexual species predict either extinction or unbounded range and niche expansion,499

similar models assuming sexual reproduction predict a third possible state where the species evolves a500

limited range, which shifts with climate change, but with the same velocity at the leading and rear edge501

(Pease et al., 1989; Polechová et al., 2009; Duputié et al., 2012; Aguilée et al., 2016). Both theoretical and502

empirical support for the role of gene swamping in setting range limits have however been challenged in503

recent years (Kottler et al., 2021), which casts doubts on the prevalence of this scenario of range shift in504

sexual species. We unfortunately lack precise mathematical predictions about the range edge velocities505

when a sexual species expands its range and niche, which is predicted to occur in a large range of506

conditions. It is interesting to note that our expression for the critical climate change velocity converges507

with that derived in sexual models (e.g Pease et al., 1989; Aguilée et al., 2016) for the case of limited508

ranges when the mutation rate is very low. Some mathematical models assuming sexual reproduction509

(Polechová et al., 2009; Aguilée et al., 2016) predict spread faster or slower than climate, with joint510

changes in niche limits. Our asexual model thus contributes to growing theory that suggests that niche511

shifts may often accompany range shifts in the context of climate change, making predictions about512

velocities of range changes more complex than previously assumed.513

While niche evolution in our model allows a diversity of range shifts in response to climate change,514

other factors may ultimately be responsible for similar patterns in empirical data. Biotic interactions515

in particular, which are not considered in our simple model, are likely to explain a lot of variation in516
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range shifts in response to climate change, both at the warm and cold edge of the range (for empirical517

patterns and theoretical predictions respectively, see Paquette and Hargreaves, 2021; Thompson and518

Fronhofer, 2019). Changes in fundamental niche due to evolution and changes in realized niches due to519

dispersal limitation or altered biotic interactions are in practice very hard to discriminate in empirical520

data collected in the wild (Bates and Bertelsmeier, 2021). Feedbacks between range shifts and niche521

evolution, as occurs in our model, further make it difficult attributing a single cause to changes in522

distributions (Nadeau and Urban, 2019).523

Our model shows how local perturbation of climatic gradients due to relief can stop the spread of524

a species towards higher latitude due to its inability to adapt to either too steep or inverted climatic525

gradients. We also predicted under which conditions local improvement of habitat quality can prevent526

extinction at the rear edge of the range. Many studies have examined how protected areas and their527

properties affect measures of climatic debt with sometimes contradictory conclusions (Bertrand et al.,528

2016; Gaüzère et al., 2016; Richard et al., 2021; Gaget et al., 2021, 2022). This diversity of findings529

may be due to the fact that climatic debt metrics at the community scale aggregates the effect of530

increased colonization rates by warm adapted species and that of decreased extinction of cold adapted531

local species in protected areas (Gillingham et al., 2015). Further mathematical developments now also532

allow to extend our analysis to nonlinear environmental gradients (Alfaro and Peltier (2022)), or different533

types of dispersal kernels.534

Conclusion. We have provided simple predictions for range shifts at the leading and trailing edges of535

an asexual species surviving climate change by a combination of spatial tracking and niche evolution.536

Although our mathematical model is mostly of heuristic value at this stage, it draws attention to several537

important conclusions for nature conservation in the context of climate warming. First, variation in538

evolutionary potential may contribute to the large variation in observed and future range shifts. Second,539

management decisions anticipating extinction at the warm margin and range shifts there as fast as540

climate change may often be misled by the too simple expectation of climate tracking. Along the same541

line, our model suggests considering the notion of climatic debt in a nuanced way, as such a debt may542

not always signal threats on species persistence. Finally, our simple model predicts that conservation543

actions can have a long-lasting effect on range shifts when protected populations still have the capacity544

to adapt to new climates.545
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Figure 1: Four different possible scenarios of propagation. The population can expand towards the cooler
part of the gradient at a velocity slower than that of climate change (B and C): in that case, it evolves
a different cool niche limit, losing the ability to grow in the cooler climates to which it was previously
adapted. Alternatively, the population can expand towards cool temperature faster than climate change
velocity, colonizing cooler environments and adapting to colder climates than before (A and D). At the
other side of the range, the species can go extinct locally at the warm edge (C and D), or, alternatively,
it can evolve greater tolerance to warm temperature allowing holding on previously occupied range and
even expanding towards warmer climates (A and B). The population maintains its initial range in A and
B only, and it maintains its original niche in A and D only.
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Figure 2: Geographical obstacle blocking the propagation. The population does not succeed to propagate
past xblock, where the downhill slope of the mountain is too steep. Propagating downhill in the direction
of the climate shift requires the population to adapt to the increase of temperature due to both climate
change and the decreasing elevation.
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Figure 3: Effect of a refuge on extinction at the warm edge of the range. The population disappears from
its warm edge until the position of the warm edge corresponds to a refuge at xrescue, where the enhanced
environment leads to the local survival of the population. This local survival is obtained through an
adaptation to the increasing temperature. These heat resistant phenotypes, which can diffuse spatially,
enable the population to survive locally also beyond the refuge.
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Figure 4: Range margins velocities and rate of evolution of niche margins as functions of the climate

change velocity c. Blue lines: velocity dx+

dt of the cold margin of the population range in (a) and speed

of evolution dy+

dt of the cold margin of the niche in (b). Red lines: velocity dx−

dt of the warm margin of

the range in (a) and speed of evolution dy−

dt of the warm margin of the niche in (b). Violet line: velocity
dx0

dt of the core of the range in (a) and speed of evolution dy0

dt of the core of the niche in (b). Here
rmax = Vs = σ = 1, b = 0.85, µ = 0.8.
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Figure 5: Range margins velocities and rate of evolution of niche margins as functions of dispersal and
mutation rates. Top: Effect of variation in the dispersal rate σ. Here rmax = Vs = 1, b = 0.85, µ = 0.8,
c = 0.5. Bottom: Effect of variation in the mutation rate µ. Here rmax = Vs = σ = 1, b = 0.85, c = 0.5.

Blue lines: velocity dx+

dt of the cold margin of the population range (a), (c), and speed of evolution dy+

dt
of the cold margin of the niche (b), (d), red lines for the warm margin of the range (a), (c), and niche

(b), (d) (i.e. dx−

dt and dy−

dt respectively). The violet line shows the speed of change in the core margin of

the range (or niche) of the population (i.e. dx0

dt and dy0

dt respectively).
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Figure 6: Description of the dynamics of populations for various dispersal rates σ > 0, mutation rates
µ > 0 and climate change speeds c > 0. Zone E: when the climate change speed is too fast, i.e. c > c∗∗,
the population dies out. If the population survives (white area) and if the climate change speed is slow
enough, the population may either maintain its warm edge (red area), succeed to maintain its phenotypic
niche (blue area), or both. These various area are delimited by the critical climate change speeds c∗∗,
c∗ and c] defined in Section 3.1. We obtain then four different dynamics of survival. Zone A: when
c < min(c∗, c]), the species both persists at the warm edge and tracks climate change in space at the
cool edge, therefore surviving in its initial range and niche. This corresponds to Figure 1A. Zone B:
when c∗ < c < c], the species survives in its initial range, but disappears from the cold edge of its niche.
This corresponds to Figure 1B. Zone C: when max(c∗, c]) < c < c∗∗ the species survives but disappears
from the warm edge of its range and the cold edge of its niche. This corresponds to Figure 1C. Zone D:
when c] < c < c∗, the species disappears from the warm part of its initial range, but tracks the shifting
climate at the cooler range margin, thus surviving in its initial niche. This corresponds to Figure 1D.
Here b = rmax = Vs = 1, and µ = 0.3 in (a), σ = 1 in (b).
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Figure 7: Effect of the mountain slope ϕ′(x) with a climate shift speed c ≥ 0. The gray area is where the
population does not succeed to propagate in the direction of the climate shift, while this propagation is
possible in the white area. Here b = rmax = Vs = 1, σ = 1, and µ = 0.1 in (a), µ = 0.3 in (b).
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- Supplementary Information -1

When do leading and rear edges of the range shift slower or faster2

than climate? Insights from a mathematical model3

4

S1 Speeds of propagation in a 1D linear environment5

Here, as explained in the main text, the dynamics of the density n(t, x, y) is described by the non local6

reaction diffusion model7

∂tn(t, x, y)− σ2

2
∂xxn(t, x, y)− µ2

2
∂yyn(t, x, y) =

(
r(t, x, y)− 1

k

∫
R
n(t, x, y′) dy′

)
n(t, x, y), (S1)8

where the growth rate at low density is given by9

r(t, x, y) = rmax −
1

2Vs
(y − yopt(t, x))

2
, (S2)10

with the optimal phenotype given by11

yopt(t, x) = b(x− ct). (S3)12

To aggregate the coefficients that appear in (S1), we use the rescaling13

N(T,X, Y ) :=
1

krmax

√
µ2

2rmax
n

 1

rmax
T,

√
σ2

2rmax
X,

√
µ2

2rmax
Y

 , (S4)14

where n(t, x, y) solves (S1). Introducing this ansatz in equation (S1), one can check that N(T,X, Y )15

solves16

∂TN − ∂XXN − ∂Y YN =

(
1−A [Y −B(X − CT )]

2 −
∫
R
N(T,X, Y ′) dY ′

)
N, (S5)17
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where18

A :=
1

2Vs

µ2

2rmax2
, B := b

σ

µ
, C := c

√
2

rmaxσ2
. (S6)19

Notice that c is the speed of the climate change in the original variables (t, x, y), whereas C is the speed20

of the climate change in the rescaled variables (T,X, Y ).21

Equation (S5) now falls into the mathematical analysis performed in Alfaro et al. (2013) when C = 0,22

and Section 4 of Alfaro et al. (2017) when C > 0. In particular, when C = 0, the condition for survival23

is24

λ :=
√
A(1 +B2)− 1 < 0.25

If this condition is satisfied, we define the critical speed26

C∗∗ := 2

√
−λ1 +B2

B2
.27

If C > C∗∗ then the population cannot endure the climate shift and goes extinct. If C < C∗∗ then the28

population will survive at all times, and moreover the size of the population range will increase. We can29

even describe the dynamics of the range with the speed of its leading and trailing edge, by defining30

Ω−X := −

√
− 4λ

1 +B2
− B2

(1 +B2)2
C2 +

B2

1 +B2
C ,31

32

Ω+
X :=

√
− 4λ

1 +B2
− B2

(1 +B2)2
C2 +

B2

1 +B2
C ,33

which are the propagation speeds in space X towards −∞, +∞ respectively. Similarly, we can compute34

the propagation speeds in the phenotypic space towards −∞, +∞:35

Ω−Y = BΩ−X −BC, Ω+
Y = BΩ+

X −BC.36

To derive the formula of Section 3.1 of the main text, it is sufficient to introduce the original variables37

in these formula through (S6) and to notice that the rescaling (S4) implies38

dx±

dt
=

√
σ2rmax

2
Ω±X ,

dy±

dt
=

√
µ2rmax

2
Ω±Y .39

For instance, we collect40

dx−

dt
=

b2σ2

µ2 + b2σ2
c− σµ b

µ2 + b2σ2

√
(c∗∗)2 − c2, (S7)41

2



42

dx+

dt
=

b2σ2

µ2 + b2σ2
c+ σµ

b

µ2 + b2σ2

√
(c∗∗)2 − c2. (S8)43

The effect of increasing speed of climate change, dispersal and mutation rates on the shifts of range44

and niche limits are discussed in the main text. Figure S1 shows that, quite trivially, increasing the45

population intrinsic rate of growth at low density, or decreasing the strength of stabilizing selection46

on the phenotype, facilitate both niche and range expansion at the cold and warm edge. The effect47

of increasing the slope of the environmental gradient is less trivial with antagonistic effects of spatial48

heterogeneity impeding niche and range expansion, but facilitating climate tracking.49

By examining conditions under which dx+

dt > c and dx−

dt > 0, we obtain expressions for the critical50

rate of climate change above which, respectively, the species fails to track its climatic niche in space (c∗),51

or fails to maintain the warm edge of its range (c]), as shown in the main text.52

Comparison with critical climate change speeds from different models. In our model (see53

Section 3.1 of the main text), the critical speed for the climate shift speed c∗∗, above which the the54

species does not survive is55

c∗∗ =

√
2

b

√√√√√
rmax − 1

2

√
µ2 + b2σ2

Vs

 (µ2 + b2σ2) . (S9)56

Letting µ
b → 0 — with µ2 + b2σ2 being constant— the critical speed for survival c∗∗ → c∗. In other57

words, a species with very low mutation can only survive by following the shifting climate. Notice also58

that letting µ
b → 0 — with µ2 + b2σ2 being constant— the critical speed for persisting at the warm edge59

of the range c] → 0. In other words, a species with low evolutionary potential cannot maintain its warm60

edge.61

Letting σ → 0 — with µ2+b2σ2 being constant— the critical speed for being able to follow the climate62

c∗ → 0. In other words, a species with very low dispersal cannot track the shifting climate. Notice also63

that letting σ → 0 — with µ2 + b2σ2 being constant— the critical speed for survival c∗∗ → c]. In other64

words, a species with very low dispersal can only survive by adapting to warmer temperatures.65

Formula (S9) can be compared to critical climate change speeds obtained from different models.66

Notice that we have derived other noteworthy formula in this study (for instance dx+

dt , dx
−

dt , dy
+

dt , dy
−

dt , c∗,67

c]), which provide a more precise description of the dynamics, but we are not aware of related formula68

in other existing approaches.69

In Berestycki et al. (2009), the authors have considered a situation with no evolution of individual70

traits. When considering the same type of growth rate function as here, the critical climate shift speed71

3



they obtain is72

c∗∗BDNZ =
√

2

√√√√√
rmax − 1

2

√
2
b2

2Vs
σ2

σ2.73

One may then check that the critical speed c∗∗BDNZ is coherent with the speed c∗∗ given by (S9) when74

µ = 0.75

In models by (Pease et al., 1989; Polechová et al., 2009; Duputié et al., 2012; Aguilée et al., 2016), the76

population is described by its size and mean phenotypic trait at each time t ≥ 0 and position x ∈ R, under77

the assumption that the population is normally distributed in trait with a fixed phenotypic variance Vp.78

These assumptions are adequate for sexual populations when the evolving trait is highly polygenic and79

selection is weak (see Mirrahimi and Raoul (2013), where Vp is related to VLE , the phenotypic variance80

at linkage equilibrium). Pease et al. (1989) and following models were able to derive a critical climate81

shift speed c∗∗TW for a population with a limited range, above which extinction is certain (here shown82

with the same notations as ours):83

c∗∗TW =

√
2

b

√√√√√
rmax − 1

2

√
b2σ2

Vs

 b2σ2, (S10)84

Note that this expression is derived by assuming that the phenotype is perfectly heritable as in the85

present manuscript. The phenotypic variance then disappears from the expression of the critical rate of86

climate change in those sexual models, which is just the same as in our asexual model when the mutation87

rate is null. A second type of population equilibrium, with an unlimited distribution, was considered in88

these models assuming sexual production (e.g. Polechová et al., 2009; Aguilée et al., 2016). A second89

critical climate change speed c∗∗UD leading to extinction was derived in this situation:90

c∗∗UD =

√
2

b

Vp√
Vs

√
rmax −

1

2

Vp
Vs
, (S11)91

which does not depend on the dispersal rate σ. It is interesting to compare this critical climate change92

velocity to our expression in the asexual model when the dispersal rate is null:93

c∗∗σ=0 =

√
2

b
µ

√√√√rmax −
1

2

√
µ2

Vs
, (S12)94

These critical climate change c∗∗TW and c∗∗UD were obtained in a model where the phenotypic variance95

of the population in any location is fixed, and it is this assumption that does not hold in our case: for our96

asexual model, the phenotypic variance is a dynamic quantity that results from the interplay of dispersal97

4



(σ > 0), mutation (µ > 0), the environmental cline ( b) and the strength of selection 1
2Vs

. This has two98

effects that reflect in (S9):99

• In our model, mutations allow the population to evolve a resistance to heat and enhance their100

ability to survive. This is how we understand the last factor (µ2 + b2σ2) appearing in (S9). On101

the contrary, in the model developed in Pease et al. (1989), the limited range range equilibrium102

is stable only if the evolutionary potential (i.e. the phenotypic variance) is limited and thus, for103

c∗∗TW , the species fail to take advantage of evolution and are bound to follow the climate change to104

survive. We believe this explains why the factor (µ2 + b2σ2) from (S9) becomes b2σ2 in (S10).105

• The critical speed c∗∗UD is obtained under the assumption that the population is uniformly present106

in the environment. The effect of the spatial structure then cancels out and the dynamics of the107

model is related to a non-spatial case. The non-spatial version of (S1) (i.e. this equation with108

σ = 0) leads to a phenotypic variance of Ṽp = µ
√
Vs. We notice that with this ansatz, there is a109

coherence between (S9) and (S12).110

S2 Speed of propagation in a more complex 1D environment111

S2.1 Relevance of speed formula in non-linear environments112

Real environments are more complex than the linear cases that we have considered above. Spatial113

heterogeneities range from small scales (e.g. the presence of rocks) to large scales (e.g. mountains).114

It is possible to introduce time and space dependence in the coefficients of our PDE model (Partial115

Differential Equation model, (S1)) to represent these features of the environment. Deriving quantitative116

properties of populations living in such environments is however a challenging task.117

In Alfaro et al. (2017), a particular nonlinear environment was considered, and the dynamics of118

solutions was described. However the developed approach has limitations (that motivated us to adopt119

a different approach here): explicit speed formula are available in very few situations, and relying on a120

Partial Differential Equation (PDE) introduces artefacts. Indeed, the diffusion operators instantaneously121

bring infinitesimal populations everywhere and populations are thus never blocked.122

In this manuscript, we thus decided to approximate the instantaneous propagation speed of a popula-123

tion by the speed of a corresponding linear environment. This idea has been developed in Maillard et al.124

(2021), using the residual effect of having a finite population size to describe explicitly the dynamics of125

the range of a population. This approximation is relevant to describe the impact of large heterogeneities,126

such as a mountain or a large refuge. It is however unable to capture the impact of precise properties of127

the environment, such as the effect of the area of a refuge.128

5



S2.2 Speed of propagation in complex 1D case: beyond linear environments129

We describe the spatial environment through the parameters (t, x) 7→ rmax and the optimal phenotypic130

trait (t, x) 7→ yopt(t, x). If the heterogeneity is on a large scale compared to the dispersion scale of131

individuals, then the dynamics of the population can be investigated through the linear environment case132

studied in Section 3.1 of the main text, as explained above in S2.1. More precisely, this approximation133

will hold provided134

∂trmax, ∂xrmax, ∂2
ttyopt, ∂2

txyopt, ∂2
xxyopt,135

are small compared to σ > 0. Note that ∂tyopt and ∂xyopt do not need to be small compared to σ. Then,136

for (t, x) close to (t̄, x̄), and provided ∂xyopt(t̄, x̄) 6= 0, we have137

rmax(t, x) ∼ rmax(t̄, x̄), yopt(t, x) ∼ yopt(t̄, x̄) + ∂xyopt(t̄, x̄)

(
(x− x̄)− −∂tyopt(t̄, x̄)

∂xyopt(t̄, x̄)

)
.138

If we denote b(t, x) := ∂xyopt(t̄, x̄) and c(t, x) :=
−∂tyopt(t̄,x̄)
∂xyopt(t̄,x̄) , then the range (x−(t), x+(t)) evolves as139

follows:140

dx+

dt
(t) := σµ

√√√√2rmax(t, x+(t))−
√

µ2+b(t,x+(t))2σ2

Vs

µ2 + b(t, x+(t))2σ2
− b(t, x+(t))2c(t, x+(t))2

(µ2 + b(t, x+(t))2σ2)2
141

+
b(t, x+(t))2σ2

µ2 + b(t, x+(t))2σ2
c(t, x+(t)),142

143

144

dx−

dt
(t) := −σµ

√√√√2rmax(t, x−(t))−
√

µ2+b(t,x−(t))2σ2

Vs

µ2 + b(t, x−(t))2σ2
− b(t, x−(t))2c(t, x−(t))2

(µ2 + b(t, x−(t))2σ2)2
145

+
b(t, x−(t))2σ2

µ2 + b(t, x−(t))2σ2
c(t, x−(t)).146

147

S2.3 Impact of a mountain148

As explained in the main text, we here consider (S1), with the growth function (S2) and the optimal149

trait not given by (S3) but150

yopt(t, x) = b(x− ct) + ϕ(x). (S13)151

Here, ϕ(x) ≥ 0 is related to the elevation at location x, and ϕ(x) = 0 outside of a given interval.152

At time t̄ let us denote by x+ = x+(t̄), y+ = y+(t̄) the position (in space and phenotype) of the front153

on the right side (i.e. the cool edge), whose instantaneous speed is under investigation. For t = t̄ + dt̄,154
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x = x+ + dx+ and y = y+ + dy+ we have155

y − yopt(t, x) = dy+ − (b+ ϕ′(x+))dx+ + bcdt̄,156

since y+ = yopt(t̄, x
+). Assuming that the dynamics is driven by the local environment, we use an analogy157

with the linear environment case studied in Section 3.1 of the main text. Therefore the instantaneous158

speed in space towards +∞ can be obtained by letting b← b+ ϕ′(x+), bc← bc into formula (S8). This159

yields the following ordinary differential equation for the position of the front:160

dx+

dt
= σµ

√√√√2rmax −
√

µ2+(b+ϕ′(x+))2σ2

Vs

µ2 + (b+ ϕ′(x+))2σ2
− b2c2

(µ2 + (b+ ϕ′(x+))2σ2)2
161

+σ2 bc

µ2 + (b+ ϕ′(x+))2σ2
(b+ ϕ′(x+)). (S14)162

The population keeps spreading towards the pole when dx+

dt (t) > 0. Examining the expression above163

shows that there are several distinct circumstances where such a spread rate towards the pole cannot be164

positive.165

Let us consider situations where the population is halted at a point xblock in space, where the local166

gradient does not change sign. We thus have: b + ϕ′(xblock) > 0 (the climate locally cools down as the167

population expands towards the pole). The second term in (S14) is then positive. Yet, the first term in168

(S14) is not real if the quantity under the square root is negative. The spread of the population is then169

halted at xblock when the climate change velocity is higher than a critical speed, c > c∗∗ϕ′(xblock) with:170

c∗∗ϕ′(xblock) =

√
2

b

√√√√√
rmax − 1

2

√
µ2 + (b+ ϕ′(xblock))2σ2

Vs

 (µ2 + (b+ ϕ′(xblock))2σ2). (S15)171

This critical speed extends the definition of the quantity c∗∗ to the case of local disturbance in the172

climatic gradient: we have in particular c∗∗ϕ′(xblock) = c∗∗ if ϕ′(xblock) = 0.173

When the obstacle locally inverts the sign of the climatic gradient (e.g. going downhill a very steep174

mountain), the conditions for blocking the spread of the population towards higher latitude are different.175

When the local slope of the environmental gradient is negative enough (ϕ′(xblock) + b < 0), the second176

term in (S14) is then negative and the speed of propagation towards the pole dx+

dt (t) can vanish. If177
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ϕ′(xblock) < −b, the population is only able to progress towards larger x if 0 ≤ c < c♦
ϕ′(xblock)

, where178

c♦
ϕ′(xblock)

=
√

2b

√
(b+ ϕ′(xblock))2σ2

µ2(µ2 + (b+ ϕ′(xblock))2σ2)3
+

1

µ2 + (b+ ϕ′(xblock))2σ2
179

×

√√√√
rmax −

1

2

√
µ2 + (b+ ϕ′(xblock))2σ2

Vs
. (S16)180

181

For a given climate shift speed c, this can be expressed in terms of a critical slope in the environmental182

gradient for which the population stops spreading: the population will not be able to propagate towards183

larger x provided184

b+ ϕ′(xblock) < − 1

σ

√
Vs

(
2rmax −

b2c2

µ2

)2

− µ2. (S17)185

S2.4 Impact of a refuge186

As explained in the main text, we here consider (S1), with the growth function given by187

r(t, x, y) = rmax + ψ(x)− 1

2Vs
(y − yopt(t, x))

2
, yopt(t, x) = b(x− ct).188

Here ψ(x) ≥ 0 is related to the improvement of the environment in the refuge.189

At time t̄ let us denote by x− = x−(t̄), y− = y−(t̄) the position (in space and phenotype) of the190

front on the left side (i.e. the warm edge), whose instantaneous speed is under investigation. Assuming191

that the dynamics is driven by the local environment we get, as in S2.3, that the instantaneous speed in192

space towards −∞ can be obtained by letting rmax ← rmax +ψ(x−). This yields the following ordinary193

differential equation for the position of the front:194

dx−

dt
= −σµ

√√√√2(rmax + ψ(x−))−
√

µ2+b2σ2

Vs

µ2 + b2σ2
− b2c2

(µ2 + b2σ2)2
+

b2σ2

µ2 + b2σ2
c. (S18)195

From the assumption c] < c < c∗∗, the right hand side member in the above ODE is positive when196

ψ ≡ 0, meaning that the species will disappear from its original location. To prevent this, it suffices that197

there is a point xrescue such that198

−σµ

√√√√2(rmax + ψ(xrescue))−
√

µ2+b2σ2

Vs

µ2 + b2σ2
− b2c2

(µ2 + b2σ2)2
+

b2σ2

µ2 + b2σ2
c < 0,199

which is equivalent to200

ψ(xrescue) >
1

2

b2

µ2
(c2 − (c])2). (S19)201
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S3 Propagation in a 2D linear environment202

As explained in the main text, to describe the dynamics of a population in a 2D environment, that is203

x = (x1, x2) ∈ R2, we here consider an extension of model (S1), namely204

∂tn(t,x, y)− σ2

2
∂x1x1

n(t,x, y)− σ2

2
∂x2x2

n(t,x, y)− µ2

2
∂yyn(t,x, y)205

=

(
r(t,x, y)− 1

k

∫
R
n(t,x, y′) dy′

)
n(t,x, y), (S20)206

207

where208

r(t,x, y) = rmax −
1

2Vs
(y − yopt(t,x))2, yopt(t,x) = b(x2 − ct).209

Note that the environmental gradient is here assumed to be linear along the vertical axis.210

S3.1 Speed of propagation in a 2D linear environment211

Using again the rescaling (S4), with n(t,x, y) solving (S20), we get that N(T,X, Y ) solves212

∂TN −∆XN − ∂Y YN =

(
1−A [Y −B(X2 − CT )]

2 −
∫
R
N(T,X, Y ′) dY ′

)
N,213

where A, B and C are given by (S6), and where X2 = X · ~e2. In the basis (~e1, ~e2) the spatial coordinates214

are (X1, X2). We consider next any unit vector ~ν in R2: we will consider populations with a density that215

only varies along the direction ~ν. Note that this direction does not necessarily align with the direction216

of the environmental gradient. To study such populations, the basis (~e′1,
~e′2) = (~ν,Rotπ

2
~ν) will be more217

convenient. The corresponding spatial coordinates are denoted (X ′1, X
′
2) and if we denote by θ the angle218

from the direction of environmental gradient and ~ν (ie ν = Rotθ ~e2), then219

X ′1 = cos θX2 + sin θX1, X ′2 = sin θ X2 − cos θ X1.220

Hence, letting N(T,X1, X2, Y ) = N (T,X ′1, X
′
2, Y ) we get221

∂TN −∆X′N − ∂Y YN =

(
1−A [Y +D′X ′2 −B′(X ′1 − C ′T )]

2 −
∫
R
N (T,X′, Y ′) dY ′

)
N ,222

where223

B′ := B cos θ, C ′ :=
C

cos θ
, D′ = B sin θ.224
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Looking for solutions of the form225

N (T,X ′1, X
′
2, Y ) =

1√
1 +D′2

u

(
T,X ′1,

Y +D′X ′2√
1 +D′2

)
,226

we see that u(T,X ′1, Z) solves227

∂Tu− ∂X′1X′1u− ∂ZZu =

(
1−Aθ [Z −Bθ(X ′1 − CθT )]

2 −
∫
R
u(T,X ′1, Z

′) dZ ′
)
u,228

where229

Aθ := A(1 +D′2) = A(1 +B2 sin2 θ), Bθ :=
B′√

1 +D′2
=

B cos θ√
1 +B2 sin2 θ

, Cθ := C ′ =
C

cos θ
. (S21)230

As in Section S1, the above equation falls into the mathematical analysis performed in Alfaro et al.231

(2013) and Section 4 of Alfaro et al. (2017). In particular, when Cθ = 0, the condition for survival is232

λθ :=
√
Aθ(1 +B2

θ )− 1 =
√
A(1 +B2)− 1 = λ < 0.233

If so, then we define the critical speed234

C∗∗θ := 2

√
−λ

1 +B2
θ

B2
θ

=
1

cos θ
2

√
−λ1 +B2

B2
=

1

cos θ
C∗∗.235

On the one hand, if Cθ > C∗∗θ (which is equivalent to C > C∗∗) then the population cannot endure the236

climate shift and goes extinct. On the other hand, if Cθ < C∗∗θ (which is equivalent to C < C∗∗) the237

population will survive at all times, and moreover the size of the population range will increase.238

We can describe the dynamics of the range in the θ-direction by defining239

Ωθ : =

√
− 4λ

1 +B2
θ

−
B2
θ

(1 +B2
θ )2

C2
θ +

B2
θ

1 +B2
θ

Cθ240

=
√

1 +B2 sin2 θ

√
− 4λ

1 +B2
− B2

(1 +B2)2
C2 + cos θ

B2

1 +B2
C , (S22)241

which is the propagation speed in the θ-direction given by ~e′1.242

Now, let us investigate which direction θ maximizes the propagation speed Ωθ. To do so, let us define,243

for θ ∈ [0, 2π),244

ϕ(θ) := α
√

1 +B2 sin2 θ + β cos θ,245
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where246

α :=

√
− 4λ

1 +B2
− B2

(1 +B2)2
C2, β :=

B2

1 +B2
C.247

For θ ∈ [0, π], we notice that ϕ(θ) = ϕ(2π − θ), and that for θ ∈ [0, π/2], ϕ(θ) > ϕ(π − θ). We then248

simply need to find the maximum of ϕ(θ) for θ ∈ [0, π/2]. Differentiating ϕ, we see that the sign of ϕ′(θ)249

is that of250

ψ(θ) := α cos θ B2 − β
√

1 +B2 sin2 θ.251

ψ is decreasing (this can be checked by differentiating ψ), and ψ(π2 ) < 0. We then simply need to252

consider the sign of ψ(0) = αB2 − β, which is actually given by the position of C with respect to253

C∗ := 2
√
−λ.254

More precisely, if C∗ < C < C∗∗, then ψ(0) < 0 and the speed is maximal in the θ = 0-direction. On255

the other hand, if 0 < C < C∗, then ψ(0) > 0 so that ψ(θ0) = 0 for a unique 0 < θ0 = θ0(C) < π
2 given256

by cos θ0 ×B2α =
√

1 +B2 sin2 θ0 × β, that is257

cos θ0

√
− 4λ

1 +B2
− B2

(1 +B2)2
C2 =

√
1 +B2 sin2 θ0

C

1 +B2
.258

The speed is then maximal in this θ0-direction (and, equivalently, in the 2π− θ0 region). Observe finally259

that θ0 → π
2 as C → 0.260

Going back to the original variables through (S21), (S6) and261

ωθ =

√
σ2rmax

2
Ωθ,262

we get the results of the main text. In particular, (S22) is recast263

ωθ :=

√
1 + b2

σ2

µ2
sin2 θ × σµ

√√√√2rmax −
√

µ2+b2σ2

Vs

µ2 + b2σ2
− b2c2

(µ2 + b2σ2)2
+ cos θ

b2σ2

µ2 + b2σ2
c. (S23)264

S3.2 Dynamics of populations’ range that are ellipses265

Assume the environmental gradient is in the direction of ~e2. We look for an ellipse (describing the266

distribution of individuals) that is an exact solution to the dynamics given by (S23). At time t ≥ 0, we267

consider the parametrization268

E(t) :=
{

(x1(t) + L(t) sin ξ, x2(t) + `(t) cos ξ) ∈ R2, 0 ≤ ξ < 2π
}
, (S24)269
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of the ellipse of center270

x0(t) = (x1(t), x2(t)) := (x0
1, x

0
2 + vt),271

with v > 0 to be determined, of semi-minor axis272

`(t) := `0 + ωt,273

with ω > 0 to be determined, and of semi-major axis L(t). We assume constant eccentricity 0 ≤ e < 1274

so that L(t) = 1√
1−e2 `(t) which, for convenience, we write275

L(t) = q`(t).276

At a given time t ≥ 0, consider a point M(t) ∈ E(t) “corresponding” to some 0 ≤ ξ < 0 (see the definition277

(S24) of the ellipse E(t)). We denote ~eθ = (sin θ, cos θ) the outward unit normal vector to the convex278

envelop of E(t) at location M(t). Note that the parameter ξ and θ are related through279

cos θ =
q√

sin2 ξ + q2 cos2 ξ
cos ξ, sin θ =

1√
sin2 ξ + q2 cos2 ξ

sin ξ. (S25)280

From this relation, we deduce281

cos2 θ

q2
+ sin2 θ =

1

sin2 ξ + q2 cos2 ξ
. (S26)282

The instantaneous propagation speed of the ellipse is given by283

~V (t) =
d

dt

−−→
OM(t) = (qω sin ξ, v + ω cos ξ).284

The speed of the propagation (in the direction normal to the edge of the range) is therefore285

~V (t) · ~eθ = v cos θ + ω(cos ξ cos θ + q sin ξ sin θ).286

Using successively (S25) and (S26) this is recast287

~V (t) · ~eθ = v cos θ + ω
q√

sin2 ξ + q2 cos2 ξ
288

= v cos θ + ω

√
cos2 θ + q2 sin2 θ289

= v cos θ + ω

√
1 + (q2 − 1) sin2 θ.290
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~V (t) · ~eθ coincides with the target dynamics ωθ in (S23). The ellipse will thus have an eccentricity e, its291

center will shift towards colder temperatures at a speed v and its semi-minor axe will grow at a speed292

ω, where293

e =

√
b2σ2

µ2 + b2σ2
, v =

b2σ2

µ2 + b2σ2
c, ω = σµ

√√√√2rmax −
√

µ2+b2σ2

Vs

µ2 + b2σ2
− b2c2

(µ2 + b2σ2)2
.294

When the mutation rate is small compared to the dispersal rate, the population spreads more easily295

along spatial directions with homogeneous climate than in the direction of the climatic gradient: the296

eccentricity of the range is then close to one (the population spreads along longitude but is narrowly297

distributed in latitude). Note that, interestingly, our model predicts that the climate change velocity298

does not affect the shape of the range. The population will survive and expand when ω > 0, which299

is the same condition as in our 1D model: in particular, R defined in (6) determines the survival (if300

R > 0) or extinction (if R < 0) of the population when there is no climate shift. When R > 0, the301

population will be able to survive a climate change provided the climate shift is smaller than the critical302

speed c∗∗ defined in (S9). Notice that ω − v > 0 means that the population will survive at its original303

location. Since ω − v has the same expression as dx−

dt , in Section 3.1, the warmest point of the range of304

the population propagates towards warmer temperatures if 0 ≤ c < c] (see Figure S2 (a)), and towards305

colder temperatures if c > c] (see Figure S2 (b)). Similarly, the coldest point of the range shifts towards306

cooler climate at velocity ω + v, which has the same expression as dx+

dt , in Section 3.1, and thus higher307

than climate change velocity only when 0 ≤ c < c∗. The core of the range also moves towards cooler308

climates with the same speed as in our 1D model.309
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Figure S1: First line: Propagation velocity and evolutionary speed of the population as a function of the
steepness of the environmental gradient b. Blue lines: velocity or speed of the edge of the population in
the direction of the climate change (“northern edge”), red lines for the opposite edge. Violet lines for
the velocity of the center of the range (left) and the evolutionary speed of the center of the phenotypic
niche (right). Here rmax = Vs = σ = 1, µ = 0.8, c = 0.5.
Second line: Propagation velocity and evolutionary speed of the population as a function of the strength
of selection 1

Vs
. Here rmax = σ = 1, b = 0.85, µ = 0.8, c = 0.5.

Third line: Propagation velocity and evolutionary speed of the population as a function of the maximal
growth rate rmax. Here Vs = σ = 1, b = 0.85, µ = 0.8, c = 0.5.
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Figure S2: Dynamics of a range along an environmental gradient, with a climate shift speed c = 0.4 (left
picture) and c = 1 (right picture). Warmer temperature in red and colder temperatures in blue, with
the climate change shifting temperatures towards the top. The initial range (t = 0) of the species is the
blue ellipse, and this range turns into the red ellipse at time t = 30. The time difference between the
blue range and the red range is then δt = 30. On (a) we have indicated the notations for the semi-minor
axis l(t) and the semi-major axis L(t). On (b) we have represented the shift of the core of the range v δt,
and the propagation of a point of the edge of the range ωθ δt. Here rmax = 0.75, Vs = σ = 1, µ = 0.1,
b = 0.15.
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