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Abstract

We consider the Allen-Cahn equation with the so-called truncated Laplacians, which
are fully nonlinear differential operators that depend on some eigenvalues of the Hessian
matrix. By monitoring the sign of a quantity that is responsible for switches from a first
order ODE regime to a second order ODE regime (and vice versa), we give a nearly com-
plete description of radial solutions. In particular, we reveal the existence of surprising
unbounded radial solutions. Also radial solutions cannot oscillate, which is in sharp con-
trast with the case of the Laplacian operator, or that of Pucci’s operators.
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1 Introduction

This work is concerned with the highly degenerate partial differential equations

P−k U + g(U) = 0 in RN , (1)

and
P+
k U + g(U) = 0 in RN . (2)

Here N ≥ 2 and, for 1 ≤ k < N , P−k et P+
k denote the so-called nonlinear truncated Laplacian

operators. The nonlinearity g is of the bistable type, a typical example being the Allen-Cahn
nonlinearity g(U) = U − U3. In this framework, we give a nearly complete description of
radial solutions, revealing sharp differences with the case of the Laplacian operator, or that
of Pucci’s operators.

The nonlinear truncated Laplacians are defined as follows. Let N ≥ 2 be given. For
U : RN → R, say of the class C2, we denote by

λ1(D
2U) ≤ · · · ≤ λN (D2U)

the eigenvalues of the Hessian matrix D2U . For 1 ≤ k < N we consider the fully nonlinear
differential operators given by

P−k U :=
k∑
i=1

λi(D
2U), (3)

and

P+
k U :=

N∑
i=N−k+1

λi(D
2U). (4)

These highly degenerate operators have been introduced in the context of differential
geometry, by Wu [25] and Sha [24], in order to solve problems related to manifolds with
partial positive curvature. They also appear in the analysis of mean curvature flow in arbitrary
codimension performed by Ambrosio and Soner [2].

In a PDE context, they are considered as an example of degenerate fully non linear
operators in the seminal User’s guide [11], but more recently both Harvey and Lawson in
[18, 19] and Caffarelli, Li and Nirenberg [10] have studied them in a completely new light.

In the very last years, some new results have been obtained on Dirichlet problems in
bounded domains in relationship with the convexity of the domain, through the study of the
maximum principle and the principal eigenvalue, see [22] and [4, 5].

As far as problems in RN are concerned, we refer to the works of Birindelli, Galise and
Leoni [6] and Galise [13] on the existence of steady states (nonlinear Liouville theorems),
and to the work [1] on solutions to evolution equations (Heat equations and Fujita blow up
phenomena).

Let us also mention the works [8], [7] involving the degenerate operators defined by
PjU := λj(D

2U) for some 1 ≤ j ≤ N , studying well-posedness of such problems, and their
approximation by a two-player zero-sum game.

When considering the Laplacian operator, the search of radial solutions U(x) = u(|x|) to

∆U + g(U) = 0 in RN ,
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reduces to understanding, for any ξ ∈ R, the non autonomous second order ODE Cauchy
problem

u′′ +
N − 1

r
u′ + g(u) = 0 in (0,+∞), u(0) = ξ, u′(0) = 0,

where u = u(r). Building on this, one can prove, when g is an odd and bistable nonlinearity,
the existence of oscillating solutions which, moreover, are periodic when N = 1 and localized
when N ≥ 2 (see below for precise definitions). We refer to [21] for such constructions, see
also [14] and [15] for related results. Such oscillating radial solutions were also constructed
for the bistable prescribed mean curvature equations [23], namely

div

(
∇U√

1± |∇U |2

)
+ g(U) = 0 in RN ,

the sign “+” corresponding to the Euclidian case, the sign “−” to the Lorentz-Minkowski
case.

Very recently, the case of Pucci’s extremal operators was studied by d’Avenia and Pom-
ponio [12]. In contrast with the Laplacian operator or the mean curvature operator, the
Pucci’s operators of radial functions may take two different forms depending on the sign
of u′′(r). Because of that, in order to construct radial solutions, one needs to monitor the
quantity u′′(r) and may have to glue solutions of two different second order ODE Cauchy
problems. Nevertheless, as proved in [12], oscillating radial solutions still exist.

The nonlinear truncated Laplacian operators share with Pucci’s operators the property
of switching their expressions depending on the sign of a quantity, namely u′′(r) − 1

ru
′(r).

Tracking such a quantity is far from trivial and, moreover, when a switch occurs, one has
to glue a solution of a first order ODE with a solution of a second order ODE. This makes
the analysis rather involved and outcomes are in sharp contrast with the aforementioned
equations. In particular, it turns out that equations (1) and (2) support the existence of
unexpected unbounded solutions but, on the other hand, do not admit any oscillating (radial)
solutions.

2 Main results

We consider a bistable nonlinearity g, a typical example being the Allen-Cahn nonlinearity
g(U) = U − U3. More generally, we always assume the following.

Assumption 2.1 (Bistable nonlinearity). The nonlinearity g : R → R is odd, and of the
class C1 on R. There are 0 < β < α such that

(i) g > 0 on (0, α), g < 0 on (α,+∞),

(ii) g′ > 0 on [0, β), g′ < 0 on (β,+∞),

(iii) g is twice differentiable at ±β and g′′(β) < 0.

In this work, by (radial) solution to (1), or (2), we always mean the following.

Definition 2.2 (Radial solutions). A radial solution to (1), or (2), is a 0 < R ≤ +∞ and a
piecewise C2 function u : [0, R) → R, with u′(0) = 0, such that U(x) := u(|x|) solves (1), or
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(2), on B(0, R). Also if R < +∞ we require |u(r)| + |u′(r)| → +∞ as r ↗ R, meaning that
the solution is maximal.

It is said oscillating if R = +∞ and u, nontrivial, has an unbounded sequence of zeros.
It is said localized if R = +∞ and u(+∞) = 0.

Remark 2.3 (Regularity of radial solutions). Following the construction in Section 4, one can
easily see that some solutions u are of the class C2 on [0, R), while some are only of the class
C1 on [0, R), C2 on [0, R) \ {t2→1} for some switching point t2→1, with u′′(t−2→1) > u′′(t+2→1).
This jump in the second derivative occurs when the operator switches from a second order
regime to a first order regime (the other way being harmless). See below for details.

Remark 2.4 (Considering (2) is enough). Since P−k U = −P+
k (−U) and g is odd, we deduce

that U solves (1) if and only if −U solves (2). As a result, we focus only on equation (2),
but any of our stated result has its immediate counterpart for equation (1).

In order to state our main results, we need to define the following critical value: from
Assumption 2.1 there is a unique ξ∗ = ξ∗(k) ∈ (β, α) such that

kg2(β)

∫ ξ∗

β

ds

g(s)
=

∫ α

β
g(s)ds. (5)

We now state our main result for k = 1, a case for which our description of radial solutions
is exhaustive.

Theorem 2.5 (Radial solutions, k = 1). Let k = 1. Then for any ξ ∈ R, there is a unique
radial solution to (2) starting from u(0) = ξ. Moreover, depending on ξ, it has the following
properties.

(i) If ξ ∈ {−α, 0, α} then u is constant (and R = +∞).

(ii) If ξ < −α then u′ < 0 on (0, R), u(r)→ −∞ as r ↗ R.

(iii) If ξ > α then u′ > 0 on (0, R), u(r)→ +∞ as r ↗ R.

(iv) If −α < ξ < 0 then R = +∞, u′ > 0 on (0,+∞), and u(+∞) = 0.

(v) If 0 < ξ < α then the three following outcomes are possible.

(a) If ξ∗ < ξ < α then u′ < 0 on (0, R), u(r)→ −∞ as r ↗ R.

(b) If ξ = ξ∗ then R = +∞, u′ < 0 on (0,+∞), u(+∞) = −α.

(c) If 0 < ξ < ξ∗ then R = +∞, there is b > 0 such that u′ < 0 on (0, b), u(b) < 0,
u′ > 0 on (b,+∞), and u(+∞) = 0.

Hence depending on the initial value ξ, radial solutions can be: (i) constant; (ii) negative,
decreasing and unbounded; (iii) positive, increasing and unbounded; (iv) negative, increas-
ing and localized; (v)-(a) sign changing, decreasing and unbounded; (v)-(b) sign-changing,
decreasing and bounded; (v)-(c) sign-changing, decreasing-increasing and localized. Note
that, when k = 1, equations (1) and (2) do not admit periodic solutions, which is in sharp
contrast with the case of the Laplacian [21] and of the Pucci’s operators [12].

As revealed below in (10), if u′′(r) − 1
ru
′(r) ≥ 0 then P+

1 U(x) = u′′(r), corresponding to
the Laplacian in dimension k = 1. Nevertheless, for |ξ| < α, the behaviour of radial solutions
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to (2) is very different from those to the bistable equation involving the Laplacian operator
in dimension one, namely

v′′ + g(v) = 0, v(0) = ξ ∈ (−α, α), v′(0) = 0, (6)

which are all bounded, in sharp contrast with the case (v)-(a) of Theorem 2.5, sign-changing,
in sharp contrast with the case (iv) of Theorem 2.5, and periodic, in sharp contrast with
the cases (iv) and (v) of Theorem 2.5. The reason is that, as revealed below in (10), if
u′′(r) − 1

ru
′(r) ≤ 0 then P+

1 U(x) = 1
ru
′(r). As a result, before entering the “Laplacian in

dimension one regime”, the energy of the solution may be increased by a “first order ODE
regime”, explaining (v)-(a) and (v)-(b). Also, the solution always finishes his way by the “first
order ODE regime”, which prevents oscillations that one may have expected, for instance in
the case (v)-(c).

We now state our main result for k ≥ 2.

Theorem 2.6 (Radial solutions, k ≥ 2). Let k ≥ 2. Then for any ξ ∈ R, there is a unique
radial solution to (2) starting from u(0) = ξ. Moreover, depending on ξ, it has the following
properties.

(i) If ξ ∈ {−α, 0, α} then u is constant (and R = +∞).

(ii) If ξ < −α then u′ < 0 on (0, R), u(r)→ −∞ as r ↗ R.

(iii) If ξ > α then u′ > 0 on (0, R), u(r)→ +∞ as r ↗ R.

(iv) If −α < ξ < 0 then R = +∞, u′ > 0 on (0,+∞), and u(+∞) = 0.

(v) If 0 < ξ < α then there are positive numbers ξ, ξ∗∗, ξ satisfying β < ξ ≤ ξ∗∗ ≤ ξ < α
such that the three following outcomes are possible.

(a) If ξ < ξ < α then u′ < 0 on (0, R), u(r)→ −∞ as r ↗ R.

(b) If ξ = ξ∗∗ then R = +∞, u′ < 0 on (0,+∞), u(+∞) = −α.

(c) If 0 < ξ < ξ then R = +∞, there is b > 0 such that u′ < 0 on (0, b), u(b) < 0,
u′ > 0 on (b,+∞), and u(+∞) = 0.

We conjecture that, in the setting of Theorem 2.6, we may take ξ = ξ∗∗ = ξ, so that the
above description would be exhaustive. We refer to Theorem 3.8 and Remark 3.9 for further
details and comments on this delicate issue.

Let us underline that, using the one-to-one relation (38) (see also subsection 4.2.2) and
the lower bound in (25), one can check that ξ > ξ∗, where ξ∗ = ξ∗(k) is defined through (5).
Roughly speaking, this means that there are “more” localized solutions, of the type (v)-(c),
in the k ≥ 2 case than in the k = 1 case. The reason is the following. As revealed below in
(10), if u′′(r)− 1

ru
′(r) ≥ 0 then P+

k U(x) = u′′(r) + k−1
r u′(r), corresponding to the Laplacian

in dimension k. In this regime, we therefore have to deal with a non autonomous second order
ODE when k ≥ 2, which typically dampens oscillations. Consequently, the possible increase
of the energy through a “first order regime” — when u′′(r) − 1

ru
′(r) ≤ 0— is less sensitive

when k ≥ 2.
Note that, when k ≥ 2, equations (1) and (2) do not admit oscillating solutions, which is

again in sharp contrast with the case of the Laplacian [21] and of the Pucci’s operators [12].
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The organization of the paper is as follows. Some preliminaries are presented in Section 3:
identification of two distinct regimes for the computation of the nonlinear truncated Lapla-
cians of radial functions, and analysis of the needed ODE Cauchy problems. In Section 4, we
prove Theorem 2.5 and Theorem 2.6, thus giving a complete description of radial solutions
when k = 1, and a nearly complete one when k ≥ 2.

3 Preliminaries

3.1 Truncated Laplacians of radial functions

Consider a radial function
U(x) := u (|x|) , (7)

for some u = u(r), and where |x| = (x21 + · · ·+ x2N )1/2. We also require u′(0) = 0.
After straightforward computations, we obtain the Hessian matrix

D2U(x) =
1

|x|
u′(r)IdN −

(
1

|x|
u′(r)− u′′(r)

)
x

|x|
⊗ x

|x|
, for all x 6= 0,

where we understand |x| = r. Since x
|x| ⊗

x
|x| is a matrix of rank 1, 1

|x|u
′(r) is an eigenvalue of

D2U(x) with multiplicity (at least) N − 1. By considering the trace of the Hessian matrix we
see that the remaining eigenvalue has to be u′′(r). As a result, comparing 1

|x|u
′(r) and u′′(r)

is enough to compute P±k U(x). More precisely, denoting

Au(r) := u′′(r)− 1

r
u′(r), (8)

we have

P−k U(x) =


k
ru
′(r) if Au(r) ≥ 0

u′′(r) + k−1
r u′(r) if Au(r) ≤ 0,

(9)

whereas

P+
k U(x) =

u
′′(r) + k−1

r u′(r) if Au(r) ≥ 0

k
ru
′(r) if Au(r) ≤ 0.

(10)

As a result, when looking after radial solutions to (1) or (2), we have to deal either with
a first order ODE, namely

k

r
u′ + g(u) = 0,

or a second order ODE, namely

u′′ +
k − 1

r
u′ + g(u) = 0,

depending on the sign of Au, and switches from a regime to another may occur.

6



3.2 Some first order ODE tools

For r0 ≥ 0 and ξ ∈ R, we consider the nonlinear first order ODE Cauchy problem{
ϕ′ = − r

kg(ϕ),
ϕ(r0) = ξ,

(11)

and denote ϕ(r) = ϕ(r; r0, ξ) its maximal solution defined on some open interval I containing
r0.

Lemma 3.1 (First order ODE Cauchy problem). If |ξ| ≤ α then the solution ϕ is global.
Next, depending on the initial data ξ, the following holds.

(i) If ξ ∈ {−α, 0,+α} then ϕ is constant.

(ii) If 0 < ξ < +α then ϕ′ < 0 on (r0,+∞), and ϕ(r)→ 0 as r → +∞.

If −α < ξ < 0 then ϕ′ > 0 on (r0,+∞), and ϕ(r)→ 0 as r → +∞.

(iii) If ξ > +α then ϕ′ > 0 on I ∩ (r0,+∞), and ϕ(r)→ +∞ as r → sup I.

If ξ < −α then ϕ′ < 0 on I ∩ (r0,+∞), and ϕ(r)→ −∞ as r → sup I.

Last, in any case, we have

Aϕ(r) = − r
k
ϕ′(r)g′(ϕ(r)) =

r2

k2
g(ϕ(r))g′(ϕ(r)), ∀r ∈ I, (12)

(Aϕ)′(r) =

(
2

r
− r

k
g′(ϕ(r))

)
Aϕ(r)− r

k
ϕ′

2
(r)g′′(ϕ(r)), ∀r ∈ I \ {0}, (13)

the latter obviously holding true when g is twice differentiable at ϕ(r) (in particular when
ϕ(r) = ±β).

Proof. Item (i) is clear since −α, 0 and α are the three zeros of g.
Let us prove (ii). Assume 0 < ξ < α, the other case being similar. Then, from Cauchy-

Lipschitz theorem, ϕ(r) is trapped in (0, α) so that not only I = R, but also ϕ′ < 0 on
(r0,+∞) from the ODE and Assumption 2.1. Denote

H(t) :=

∫ ξ

t

ds

g(s)
, 0 < t ≤ ξ. (14)

From Assumption 2.1, H is a decreasing bijection from (0, ξ) to (0,+∞). By separating
variables, we can compute

ϕ(r) = H−1
(
r2 − r20

2k

)
→ 0, as r → +∞. (15)

Let us prove (iii). Assume ξ > α, the other case being similar. Then, from Cauchy-
Lipschitz theorem, ϕ(r) is trapped in (α,+∞) so that ϕ′ > 0 on I ∩ (r0,+∞) from the ODE
and Assumption 2.1. If sup I < +∞ then one must have ϕ(r) → +∞ as r → sup I. On the
other hand, if sup I = +∞ then, from the ODE, the limit in +∞ cannot be finite (otherwise
ϕ′(r)→ +∞ which is a contradiction), and thus has to be +∞.

Last, recalling Aϕ(r) = ϕ′′(r)− 1
rϕ
′(r), we differentiate once the ODE (11) to reach (12),

that we differentiate to get (13).
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For a solution ϕ, we say that Aϕ ceases to be nonpositive at s0 > 0 if (i) there is ε1 > 0
such that Aϕ ≤ 0 on (s0 − ε1, s0) and (ii) for all ε2 > 0, there is s∗ ∈ (s0, s0 + ε2) such that
Aϕ(s∗) > 0.

Corollary 3.2. Aϕ ceases to be nonpositive at s0 > 0 if and only if ϕ(s0) = β; and, if so,
there is ε3 > 0 such that Aϕ > 0 on (s0, s0 + ε3).

Proof. If Aϕ ceases to be nonpositive at s0 > 0 then Aϕ(s0) = 0. We deduce from (12) that
g(ϕ(s0))g

′(ϕ(s0)) = 0. If g(ϕ(s0)) = 0 then ϕ(s0) ∈ {−α, 0, α} and, from the equation for
ϕ, ϕ′(s0) = 0 so that ϕ is constant, which is a contradiction. Hence g′(ϕ(s0)) = 0, meaning

ϕ(s0) = ±β, and, from (13) and the equation for ϕ, we have (Aϕ)′(s0) = − s30
k3
g2(±β)g′′(±β)

which, see Assumption 2.1, is negative at −β (hence a contradiction) and positive at +β. The
converse is obviously true since then Aϕ(s0) = 0 and (Aϕ)′(s0) > 0.

3.3 Some second order ODE tools

For r0 ≥ 0, ξ ∈ R and θ ∈ R with

(r0, θ) ∈ (0,+∞)× R ∪ {(0, 0)}, (16)

we consider the nonlinear second order ODE Cauchy problem
ψ′′ + k−1

r ψ′ + g(ψ) = 0,
ψ(r0) = ξ,
ψ′(r0) = θ,

(17)

and denote by ψ(r) = ψ(r; r0, ξ, θ) its maximal solution defined on some open interval J
containing r0.

Remark 3.3 (Sturm-Liouville approach). Stricto sensu, when k 6= 1 and (r0, θ) = (0, 0), the
Cauchy-Lipschitz theorem does not apply to (17). However using a Sturm-Liouville approach,
one can write (rk−1ψ′)′ = −rk−1g(ψ(r)) so that

ψ′(r) = − 1

rk−1

∫ r

0
sk−1g(ψ(s))ds, (18)

and then recast the ODE problem (17) into the integral equation

ψ(r) = ξ −
∫ r

0

1

sk−1

∫ s

0
tk−1g(ψ(t))dtds.

Under this form one can then prove that the conclusion of the Cauchy-Lipschitz theorem does
hold, see [17, Proposition 3.1] among others.

Furthermore, when k ≥ 2, if ψ solves the second order ODE on (0, R) and can be extended

by continuity at r = 0, say ψ(0) = ξ ∈ R, then, necessarily, ψ′(0) = 0 and ψ′′(0) = −g(ξ)
k

(notice that the solution ϕ to the first order Cauchy problem (11) also obviously satisfies

ϕ′(0) = 0 and ϕ′′(0) = −g(ξ)
k ). Indeed, the Sturm-Liouville approach provides, for any 0 <

r0 < r < R,

rk−1ψ′(r)− rk−10 ψ′(r0) = −
∫ r

r0

sk−1g(ψ(s))ds.
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The right hand side has a finite limit as r0 → 0 and, thus, so has rk−10 ψ′(r0); since k ≥ 2 and
ψ(0) = ξ, this limit has to be zero. As a result (18) is still valid and can be recast

ψ′(r) = −r
∫ 1

0
zk−1g(ψ(rz))dz,

so that ψ′(0) = 0 and ψ′(r)
r → −g(ξ)

k as r → 0, as announced. In particular, when k ≥ 2,
the requirement u′(0) = 0 is automatically satisfied by solutions in the sense of Definition 2.2
(and also by all solutions that can be extended to zero, see subsection 4.3).

Lemma 3.4 (Monitoring Aψ). We have, for all r ∈ J \ {0},

Aψ(r) = −k
r
ψ′(r)− g(ψ(r)), (19)

(Aψ)′(r) = −k
r
Aψ(r)− ψ′(r)g′(ψ(r)), (20)

(Aψ)′′(r) =
k

r2
Aψ(r)− k

r
(Aψ)′(r)− ψ′′(r)g′(ψ(r))− ψ′2(r)g′′(ψ(r)), (21)

the latter obviously holding true when g is twice differentiable at ψ(r) (in particular when
ψ(r) = ±β). Also, for any r0 ∈ J ,

Aψ(r) = Aψ(r0)
rk0
rk
−
∫ r

r0

sk

rk
ψ′(s)g′(ψ(s))ds, ∀r ∈ J \ {0}. (22)

Proof. Recalling Aψ(r) = ψ′′(r)− 1
rψ
′(r), the three first properties directly follow from using

and differentiating the ODE. Last, solving (20) provides the integral representation.

For a solution ψ, we say that Aψ ceases to be nonnegative at s0 > 0 if (i) there is ε1 > 0
such that Aψ ≥ 0 on (s0 − ε1, s0) and (ii) for all ε2 > 0, there is s∗ ∈ (s0, s0 + ε2) such that
Aψ(s∗) < 0.

Corollary 3.5. Aψ ceases to be nonnegative at s0 > 0 if and only if ψ(s0) belongs to
(−∞,−α) ∪ (−β, 0) ∪ (β, α) and ψ′(s0) = − s0

k g(ψ(s0)); and, if so, there is ε3 > 0 such
that Aψ < 0 on (s0, s0 + ε3).

Proof. If Aψ ceases to be nonnegative at s0 > 0 then Aψ(s0) = 0 and (Aψ)′(s0) ≤ 0. We
deduce from (19) and (20) that g(ψ(s0))g

′(ψ(s0)) ≤ 0, which means ψ(s0) ∈ (−∞,−α] ∪
[−β, 0] ∪ [β, α]. If ψ(s0) ∈ {−α, 0, α}, we deduce from ψ′(s0) = − s0

k g(ψ(s0)) = 0 that ψ
is constant, which is a contradiction. If ψ(s0) = ±β, we deduce from (19) and (20) that
Aψ(s0) = (Aψ)′(s0) = 0, which enforces (Aψ)′′(s0) = 0, which is contradicted by (21). Hence
ψ(s0) ∈ (−∞,−α) ∪ (−β, 0) ∪ (β, α) and ψ′(s0) = − s0

k g(ψ(s0)). The converse is obviously
true since then Aψ(s0) = 0 and (Aψ)′(s0) < 0.

We now distinguish the case k = 1 from the case k ≥ 2.

3.3.1 The autonomous case k = 1

This case is well understood: apart from being constant, solutions can be unbounded (case
(i) below), heteroclinic orbits or standing waves (see (ii) below) or periodic (case (iii) below).
In the sequel, we denote

G(t) :=

∫ t

0
g(s)ds.
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Lemma 3.6 (Second order ODE Cauchy problem, k = 1). Let k = 1. Define the initial
energy

E = E(ξ, θ) :=
1

2
θ2 +G(|ξ|). (23)

Depending on the initial data (ξ, θ), the following holds.

(i) If |ξ| > α or E > G(α) then ψ(r)→ +∞ or ψ(r)→ −∞ as r → sup J .

(ii) If |ξ| ≤ α and E = G(α) the following three situations may occur: if θ = 0 then ψ ≡ −α
or ψ ≡ α; if θ < 0 then ψ′ < 0 on R, ψ(−∞) = α, ψ(+∞) = −α; if θ > 0 then ψ′ > 0
on R, ψ(−∞) = −α, ψ(+∞) = α.

(iii) If |ξ| < α and 0 < E < G(α) then the solution ψ is trapped in the interval (−α, α), is T
periodic for some T = T (ξ, θ) > 0, has exactly two zeros on any [a, a+T ), has exactly two
critical points on any [a, a+ T ) where it moreover changes monotonicity, is symmetric
with respect to any critical point (that is ψ′(r∗) = 0 ⇒ ψ(r∗ − ·) = ψ(r∗ + ·)), and is
anti-symmetric with respect to any zero (that is ψ(r∗) = 0 ⇒ ψ(r∗ − ·) = −ψ(r∗ + ·)).
Moreover ψ is a surjection from R to [−M,M ] where |ξ| ≤ M < α is (uniquely)
determined by ∫ M

|ξ|
g(s)ds =

1

2
θ2,

and the period is given by

T

2
=

∫ M

−M

ds√
2(E −G(s))

= 2

∫ M

0

ds√
2(E −G(s))

.

(iv) If |ξ| ≤ α and E = 0, meaning (ξ, θ) = (0, 0), then ψ ≡ 0.

Proof. The associated energy is conserved, that is

1

2
ψ′

2
(r) +G(ψ(r)) = E, ∀r ∈ J. (24)

From this and a standard phase plane analysis, see Figure 1, we classically reach all the
desired conclusions. For instance, in the case (iii), it follows from E < G(α) and (24) that
ψ(r) cannot touch α nor −α. Hence, ψ(r) is trapped in (−α, α), (ψ(r), ψ′(r)) cannot blow up
in finite time, and thus the solution is global. Next, by combining the phase plane analysis
and the identity

ψ′(r) = ±
√

2(E −G(ψ(r)),

we reach the conclusions of (iii). Details are omitted.

3.3.2 The non autonomous case k ≥ 2

The non autonomous case k ≥ 2 is more tricky. Nevertheless, when (r0, θ) = (0, 0), the
comprehension of the Cauchy problem is still complete, whatever k ≥ 1.

Lemma 3.7 (Second order ODE Cauchy problem, the case (r0, θ) = (0, 0)). Let k ≥ 1.
Assume (r0, θ) = (0, 0). If |ξ| ≤ α then the solution ψ is global. Next, depending on the initial
data ξ, the following holds.
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Figure 1: Phase plane analysis for (17) with k = 1 and the cubic nonlinearity g(ψ) = 1
4(ψ−ψ3).

In red, the nullcline ψ = 0, in green the nullcline ψ′ = 0, in blue the trajectory starting from
ξ = 0.6, θ = −0.2, providing a periodic solution.

(i) If ξ ∈ {−α, 0,+α} then ψ is constant.

(ii) If 0 < |ξ| < α then ψ is oscillating, satisfies ‖ψ‖L∞(R) = ξ,

ψ′
2
(r) ≤ 2

∫ ξ

ψ(r)
g(t)dt ≤ 2G(ξ), ∀r ∈ R,

and
c

r
k−1
2

≤ |ψ(r)|+ |ψ′(r)|+ |ψ′′(r)| ≤ C

r
k−1
2

, ∀r ≥ 1,

for some constants c = c(ξ) > 0, C = C(ξ) > 0. Moreover, the critical points of ψ on
[0,+∞) form a sequence 0 = x0 < x1 < · · · < xn → +∞ such that ψ(xk)ψ(xk+1) < 0.

(iii) If ξ > +α then ψ′ > 0 on J ∩ (0,+∞), and ψ(r)→ +∞ as r → sup J .

If ξ < −α then ψ′ < 0 on J ∩ (0,+∞), and ψ(r)→ −∞ as r → sup J .

Proof. Item (i) is clear, whereas item (ii) is borrowed from [21], more precisely Proposition
2.3 and Lemma 2.5 together with their proofs.

Let us prove (iii). Since g is odd, we check that ψ(r; 0,−ξ, 0) = −ψ(r; 0, ξ, 0), so we only

need to consider ξ > α. From the ODE we have ψ′′(0) = −g(ξ)
k > 0, so that there is ε > 0

such that ψ′ > 0 on (0, ε).
Assume by contradiction the existence of r0 > 0 such that ψ′(r0) = 0. We may assume that

r0 is the smallest positive value with this property so that ψ(r0) > ξ > α and ψ′′(r0) ≤ 0.
Testing the ODE at r = r0 we reach ψ′′(r0) > 0, a contradiction. As a result ψ′ > 0 on
J ∩ (0,+∞).

Hence, if sup J < +∞ then one must have ψ(r)→ +∞ as r → sup J . On the other hand,
if sup J = +∞, let us assume by contradiction that the limit ` > ξ > α of ψ(r) in +∞ is

finite. From (18) we deduce ψ′(r) ∼ −g(`)
k r as r → +∞, which contradicts ` < +∞. As a

result, ` = +∞ and we are done with (iii).
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Last, we need a comprehension of the non autonomous case k ≥ 2, starting from r0 > 0.
When k ≥ 2, oscillations are typically dampened and some solutions, not trapped in the k = 1
case, become trapped, and thus oscillating, when k ≥ 2. Note that many results exist [20],
[9], [16], when the potential G is convex and/or coercive. In the present bistable situation,
the potential G is neither convex nor coercive and, therefore, the issue of blow-up solutions
is intricate. Therefore, we believe Theorem 3.8 and its proof are interesting by themselves in
the framework of ODEs.

For our purpose in Section 4, we only need to consider the one-parameter family of solu-
tions ψ(r; r0, ξ, θ) with r0 > 0, ξ = β, θ = −g(β)

k r0, which corresponds to a switch from the
first order ODE to the second order one for the radial solutions of (2), see Section 4.

Theorem 3.8 (Second order ODE Cauchy problem, the case r0 > 0). Let k ≥ 2. For r0 > 0,

let us denote ψ(r) := ψ
(
r; r0, β,−g(β)

k r0

)
. Then (recall that G(t) =

∫ t
0 g(s)ds) there are

positive real numbers r0, r∗∗0 , r0 satisfying

k
√

2

g(β)

(
G(α)− 1

k
G(β)

) 1
2

≤ r0 ≤ r∗∗0 ≤ r0 ≤
k
√

2

g(β)

(
G(α)−G(β) +

k − 1

k
g(β)(α+ β)

) 1
2

,

(25)
and such that the following holds.

(i) If 0 < r0 < r0 then, for r > r0, the solution ψ is trapped in (−α, α), global, oscillating
and localized. Moreover, there is a sequence r0 < r1 < · · · < rn → +∞ such that, for
any k ∈ N, ψ is strictly monotone on (rk, rk+1), and ψ(r2k)ψ(r2k+1) < 0.

(ii) If r0 = r∗∗0 then ψ′ < 0 on (r0,+∞) and ψ(+∞) = −α.

(iii) If r0 > r0 then ψ′ < 0 on J ∩ (r0,+∞), and ψ(r)→ −∞ as r → sup J .

Remark 3.9 (A conjecture). As already emphasized above, such an analysis does not stand
in the classical frameworks, since the potential G is neither convex nor coercive. Another
important difficulty comes from the fact that we look at a one-parameter family: r0 determines
both the starting point (at r = r0) and the starting slope (ψ′(r0) = −g(β)

k r0). Because of that,
the description in Theorem 3.8 is not exhaustive. In the proof below, we conjecture that the
set B is actually a singleton. In other words, we conjecture that, in the setting of Theorem
3.8, we may take r0 = r∗∗0 = r0.

Proof. We temporarily denote ψ(r) = ψ
(
r; r0, β,−g(β)

k r0, g
)

to remind the dependence on

the nonlinearity g. We observe that ψ(r) = v
(
r
r0

)
, where

v(r) = ψ

(
r; 1, β,−g(β)

k
r20, r

2
0g

)
.

In the sequel, in order to fix the initial point as 1, we work on v and denote Jv its maximal
interval of validity.

If there is a (first) point r∗ > 1 where v′(r∗) = 0 then, from the equation, v(r∗) ∈ (−α, 0).
Then, using the equation and the energy identity

1

2
v′

2
(r) + r20G(v(r)) =

1

2
v′

2
(t) + r20G(v(t))− (k − 1)

∫ r

t

v′2(s)

s
ds, (26)

12
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Figure 2: The solutions ψ
(
r; r0, β,−g(β)

k r0

)
with k = 2, g(u) := u − 1

3u
3 (so that β = 1

and α =
√

3). Solutions of the type A: in green r0 = 0.5, in blue r0 = 1.5, in cyan r0 = 4.
Solution of the type B: in dashed red r0 ≈ 4.139. Solutions of the type C: in purple r0 = 5.

we easily see that v is trapped in (−α, α), global, oscillating and localized, which corresponds
to case (i). On the other hand if v′ < 0, note that the situation v(+∞) = 0 is excluded by
a Sturm separation argument similar to [21, Lemma 2.5]. As a result, we have the partition
(0,+∞) = A ∪B ∪ C where

A := {r0 > 0 : ∃r∗ > 1, v′(r∗) = 0 and v(+∞) = 0}
B := {r0 > 0 : v′ < 0 on [1,+∞) and v(+∞) = −α}
C := {r0 > 0 : v′ < 0 on Jv ∩ [1,+∞) and v(r)→ −∞ as r ↗ sup Jv}.

From the continuity of solutions with respect to initial conditions and parameters, both
the sets A and C are open.

Now, returning to ψ(r) we naturally have, see Figure 2,

A = {r0 > 0 : ∃r∗ > r0, ψ
′(r∗) = 0 and ψ(+∞) = 0}

B = {r0 > 0 : ψ′ < 0 on [r0,+∞) and ψ(+∞) = −α}
C = {r0 > 0 : ψ′ < 0 on Jψ ∩ [r0,+∞) and ψ(r)→ −∞ as r ↗ sup Jψ},

with obvious notations.
Here are a few observations. First, from Lemma 3.4, we have Aψ(r0) = (Aψ)′(r0) = 0

while (Aψ)′′(r0) > 0, so that
Aψ > 0 on (r0, r0 + ε), (27)

for some ε > 0 (and this is true for any k ≥ 1). Next, the difference of energy E(r) :=
1
2ψ
′2(r) +G(ψ(r)) between points t and r > t is given by

E(r)− E(t) = −(k − 1)

∫ r

t

ψ′(s)

s
ψ′(s)ds. (28)
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Notice also that d
dr

(
ψ′r)
r

)
= 1

rAψ(r). It follows that, if we know that Aψ ≥ 0 and ψ′ < 0 on

(r0, r), then we have the lower bound

E(r)− E(r0) ≥ −(k − 1)

∫ r

r0

ψ′(r0)

r0
ψ′(s)ds =

k − 1

k
g(β)(ψ(r)− β). (29)

Building on this, we can pursue and conclude.
• First, if r0 is small then the initial energy is small and the damping is large, so that

solutions are expected to be trapped and localized. Precisely, let us prove

there is r0 ≥ rloc0 :=
k
√

2

g(β)

(
G(α)− 1

k
G(β)

) 1
2

> 0 such that (0, r0) ⊂ A. (30)

From (27) and Corollary 3.5, we know that Aψ ≥ 0 on (r0, r1) where r1 > r0 is the first point

where ψ values 0. From the equation for ψ, we thus have ψ′(r)
r ≤ − 1

kg(ψ(r)) on (r0, r1), so
that (28) yields

E(r1)− E(r0) ≤
k − 1

k

∫ r1

r0

g(ψ(s))ψ′(s)ds =
k − 1

k
(G(ψ(r1))−G(β)) = −k − 1

k
G(β). (31)

Now, if r0 ∈ C, then ψ′ < 0 on (r1, r2) where r2 > r1 is the point where ψ(r2) = −α, and

(28) enforces E(r1) ≥ E(r2) ≥ G(−α) = G(α). Hence, from (31), G(α) ≤ 1
2
g2(β)
k2

r20 +G(β)−
k−1
k G(β), that is r0 ≥ rloc0 . If r0 ∈ B, we find the same estimate r0 ≥ rloc0 (roughly speaking
r2 = +∞). This proves that (0, rloc0 ) ⊂ A and thus (30).
• Second, if r0 is large then not only the damping is small but also the initial speed is

very negative, so that solutions are expected to be non trapped. Precisely, let us prove that

there is r0 ≤
k
√

2

g(β)

(
G(α)−G(β) +

k − 1

k
g(β)(α+ β)

) 1
2

such that (r0,+∞) ⊂ C. (32)

If r0 ∈ A, then there is r1 > r0 such that ψ′ < 0 on (r0, r1), ψ
′(r1) = 0, and ψ(r1) ∈ (−α, 0);

furthermore (27) and Corollary 3.5 enforce Aψ ≥ 0 on (r0, r1). We can thus apply (29) and
obtain

G(α)− E(r0) ≥ E(r1)− E(r0) ≥
k − 1

k
g(β)(ψ(r1)− β) ≥ k − 1

k
g(β)(−α− β),

which means r0 ≤ rnon−tra0 := k
√
2

g(β)

(
G(α)−G(β) + k−1

k g(β)(α+ β)
) 1

2 . If r0 ∈ B, we find the

same estimate r0 ≤ rnon−tra0 (roughly speaking r1 = +∞). This proves that (rnon−tra0 , 0) ⊂ C
and thus (32).
• Hence, both A and C are open and non empty so that (0,+∞) = A∪B ∪C enforces B

to be non empty, which completes the proof.

4 Radial solutions

In this section, we will prove Theorem 2.5 (k = 1) and Theorem 2.6 (k ≥ 2). Recalling
Definition 2.2, we thus look after a 0 < R ≤ +∞ and a piecewise C2 function u : [0, R)→ R,
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with u′(0) = 0, starting from u(0) = ξ ∈ R, and such that U(x) := u(|x|) solves (2) on
B(0, R). From subsection 3.1, we understood that, depending on the sign of

Au(r) := u′′(r)− 1

r
u′(r),

we are facing either a first order ODE studied in subsection 3.2 or a second order ODE
studied in subsection 3.3. We call switching points the points where Au(r) changes sign,
possibly with a jump. If such points exist, in order to construct radial solutions, we need to
glue some solutions to (11) with some solutions to (17). It is therefore crucial to determine
when a switch occurs at r0 > 0 together with the “starting behaviour” at r0 = 0.

In what follows FOE stands for the First Order Equation (whose solutions are typically
denoted ϕ) and SOE for the Second Order Equation (whose solutions are typically denoted
ψ).

Lemma 4.1 (Switching points). Let (R, u) be a solution to (2) in the sense of Definition 2.2.

(i) It switches from FOE to SOE at r0 ∈ (0, R) if and only if ϕ(r0) = β. The solution is
then of class C2 in a neighbourhood of r0.

(ii) It switches from SOE to FOE at r0 ∈ (0, R) if and only if ψ(r0) ∈ (−∞,−α)∪ (−β, 0)∪
(β, α) and ψ′(r0) = − r0

k g(ψ(r0)). The solution is then of class C1 in a neighbourhood
of r0, but u′′(r−0 ) > u′′(r+0 ).

Proof. Let us prove (i). From Corollary 3.2, the condition ϕ(r0) = β is necessary for the
switch to occur. Conversely, ϕ(r0) = β enforces ϕ′(r0) = − r0

k g(β) and, u being C1 has to be

equal to ψ = ψ
(
·; r0, β,−g(β)

k r0

)
, provided by Theorem 3.8, on (r0, r1) for some r1 > 0. It

follows from (27) that the switch has occurred at r0. Last, the continuity of Au implies that
of u′′ and the solution u is C2 in a neighbourhood of r0.

Let us prove (ii). From Corollary 3.5, the stated conditions are necessary. Conversely, u
being C1 has to be equal to ϕ = ϕ(·; r0, ψ(r0)), defined at the beginning of subsection 3.2, on

(r0, r1) for some r1 > 0. It follows from (12) that Aϕ(r0) =
r20
k2
g(ϕ(r0))g

′(ϕ(r0)) < 0, and thus
the switch has occurred at r0. Last, Aψ(r0) = 0 > Aϕ(r0) transfers into u′′(r−0 ) > u′′(r+0 ).

Lemma 4.2 (When starting). Let (R, u) be a solution to (2) in the sense of Definition 2.2.
Denote u(0) = ξ ∈ R.

(i) If ξ ∈ {−α, 0, α}, then R = +∞ and u is constant.

(ii) If ξ ∈ (−∞,−α) ∪ [−β, 0) ∪ (β, α), then there is ε > 0 such that Au < 0 on (0, ε), so
that u follows the FOE on [0, ε).

(iii) if ξ ∈ (−α,−β) ∪ (0, β] ∪ (α,+∞), then there is ε > 0 such that Au > 0 on (0, ε), so
that u follows the SOE on [0, ε).

Proof. A key observation is that if u follows the FOE then u′ = − r
kg(u), while if u follows

the SOE then Au ≥ 0 so that u′ ≤ − r
kg(u). In particular if r is such that u(r) = β then

u′(r) ≤ − r
kg(β) < 0, i.e. u = β is a wall that can be crossed in the decreasing direction only.

As a result it follows from Lemma 4.1 (i) that there can be at most one switch from FOE to
SOE, and the total number of switches is at most three. In particular

there is ε > 0 such that Au has a constant sign on (0, ε). (33)
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Conclusion (i) is then obvious and we now assume ξ 6∈ {−α, 0, α}.
Assume Au ≤ 0 on [0, ε) so that u = ϕ follows the FOE. According to (12), ϕ(r) lies in

the region {gg′ ≤ 0}, hence ξ ∈ (−∞,−α) ∪ [−β, 0) ∪ [β, α). But if ξ = β then, from the
equation for ϕ, ϕ′(0) = 0, ϕ′′(0) = − 1

kg(β) < 0 so that u = ϕ enters the interval (0, β) where
it cannot follow the FOE. Hence ξ ∈ (−∞,−α) ∪ [−β, 0) ∪ (β, α), which proves (iii), up to
the strict inequality for Au that is easily checked via (12), (13).

Assume Au ≥ 0 on [0, ε) so that u = ψ follows the SOE. From (22), we get Aψ(r) =

−
∫ r

0

sk

rk
ψ′(s)g′(ψ(s))ds on [0, ε). Taking into account ψ′′(0) = − 1

kg(ξ), we infer that, up to

reducing ε > 0, −ψ′ has the same sign as g(ψ) on (0, ε). Hence, the sign of −ψ′(s)g′(ψ(s))
is the one of g(ψ(s))g′(ψ(s)) which implies that ψ(s) lives in the region {gg′ ≥ 0}, hence
ξ ∈ (−α,−β]∪ (0, β]∪ (α,+∞). It remains to exclude the case ξ = −β: in this case ψ′′(0) > 0
so that, up to reducing ε > 0, ψ′(r) > 0 on this interval; but Aψ(r) ≥ 0 implies (Aψ)′(r) =
−k
rAψ(r)−ψ′(r)g′(ψ(r)) < 0, a contradiction. Hence ξ ∈ (−α,−β)∪ (0, β]∪ (α,+∞), which

proves (ii), up to the strict inequality for Au that is easily checked via (19), (20), (21).

4.1 Starting with Au > 0

In this subsection we assume u(0) = ξ with ξ ∈ (−α,−β) ∪ (0, β] ∪ (α,+∞). We know from
Lemma 4.2 that

∃ε > 0,∀r ∈ (0, ε),Au(r) > 0, (34)

and that the solution u follows the SOE on [0, ε). We thus denote ψ0(r) := ψ(r; 0, ξ, 0) the
solution to (17), that is 

ψ′′0 + k−1
r ψ′0(r) + g(ψ0) = 0,

ψ0(0) = ξ,
ψ′0(0) = 0,

(35)

defined on some open interval J0 containing 0, and we have to start, at least on (0, ε0 :=
min(ε, sup J0)), with u ≡ ψ0. We know that there is η > 0 such that Aψ0 > 0 in (0, η), and
we can define

t0 := sup{t > 0 : Aψ0 > 0 on (0, t)} ∈ (0, sup J0]. (36)

Now we distinguish some cases depending on the initial value ξ.
• If ξ > α we know from Lemma 3.7 (iii) that ψ′0(t0) > 0 and ψ0(t0) > α so that,

according to Lemma 4.1, no switch can occur. Hence t0 = sup J0 and, in view of Lemma 3.7
(iii), u ≡ ψ0 provides a positive, increasing and unbounded solution on [0, sup J0).
• If −α < ξ < −β, it follows from Lemma 3.7 (ii) that ψ0 is oscillating (periodic when

k = 1). From ψ′′0(0) = −g(ξ)
k > 0 and thus, from Lemma 3.7 (ii), there is d > 0 such that

ψ′0 > 0 on (0, d] and ψ0(d) = 0. Therefore, from the equation, ψ′′0(d) ≤ 0 and then Aψ0(d) =
ψ′′0(d)− 1

dψ
′
0(d) < 0. As a result t0 < d and from Lemma 4.1 we obtain ψ0(t0) ∈ (−β, 0).

Now, after the switching point t0, we consider ϕ0(r) := ϕ(r; t0, ψ0(t0)) the solution to
(11). From Lemma 3.1 and (12), we know that Aϕ0 < 0 on (t0,+∞), and there is no more
switching point.

Gluing ψ0 and ϕ0 provides a negative, increasing and localized solution u on [0,+∞).

• If 0 < ξ ≤ β, we know ψ′′0(0) = −g(ξ)
k < 0 and thus, from Lemma 3.7, there are 0 < b < d

such that ψ′0 < 0 on (0, b), ψ0(b) ∈ [−ξ, 0), ψ′0 > 0 on (b, d], ψ0(d) = 0. From the equation,
ψ′′0(d) < 0 and then Aψ0(d) = ψ′′0(d)− 1

dψ
′
0(d) < 0, so that t0 < d and even b < t0 < d as one

can check via Corollary 3.5 and the equation for ψ0. In particular ψ0(t0) ∈ (−ξ, 0) ⊂ (−β, 0).
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Now, after the switching point t0, we consider ϕ0(r) := ϕ(r; t0, ψ0(t0)) the solution to
(11). From Lemma 3.1 and (12), we know that Aϕ0 < 0 on (t0,+∞), and there is no more
switching point.

As a result, gluing ψ0 and ϕ0 provides a sign-changing, decreasing-increasing and localized
solution u on [0,+∞).

4.2 Starting with Au < 0

In this subsection we assume u(0) = ξ with ξ ∈ (−∞,−α) ∪ [−β, 0) ∪ (β, α). We know from
Lemma 4.2 that

∃ε > 0,∀r ∈ (0, ε),Au(r) < 0, (37)

and that the solution u follows the FOE on [0, ε). We thus denote ϕ0(r) := ϕ(r; 0, ξ) the
solution to (11), defined on some open interval I0 containing 0, and we have to start, at least
on (0, ε0 := min(ε, sup I0)), with u ≡ ϕ0.

Now we distinguish some cases depending on the initial value ξ.
• If ξ < −α then (12), combined with Lemma 3.1 and Assumption 2.1, shows that

Aϕ0(r) < 0 for all r ∈ (0, sup I0). As a result, there is no switching point and u ≡ ϕ0 as long
as it exists. This provides a negative, decreasing and unbounded solution u on [0, sup I0).
• If −β ≤ ξ < 0 then (12), combined with Lemma 3.1 and Assumption 2.1, shows that

Aϕ0(r) < 0 for all r ∈ (0,+∞). As a result, there is no switching point and u ≡ ϕ0 on
[0,+∞). This provides a negative, increasing and localized solution u on [0,+∞). Observe
that such solutions “without any switch” were already described in [3].
• We now focus on the case β < ξ < α, which is the richest. From item (ii) of Lemma

3.1, we know that ϕ′0 < 0 in (0,+∞). In particular, from (12) and Assumption 2.1, we have
Aϕ0 < 0 as long as ϕ0 has not reached β, which happens at some r0 > 0. From the expression
(15) of the solution ϕ0, we know that r0 > 0 is given by

r20 = 2k

∫ ξ

β

ds

g(s)
. (38)

We thus have to select
u ≡ ϕ0 on [0, r0], (39)

and from Lemma 4.1 we know that u switches from FOE to SOE at r0.
From now we distinguish the situation k = 1 (for which we build on Lemma 3.6) from the

situation k ≥ 2 (for which we build on Theorem 3.8).

4.2.1 Switch at r = r0 when k = 1

We now consider ψ0(r) := ψ(r; r0, β,−r0g(β)) the solution to (17) with k = 1, that is
ψ′′0 + g(ψ0) = 0,
ψ0(r0) = β,
ψ′0(r0) = −r0g(β),

(40)

defined on some open interval J0 containing r0. From Lemma 3.6, the associated energy given
by

E0 =
1

2
(r0g(β))2 +G(β) = g2(β)

∫ ξ

β

ds

g(s)
+

∫ β

0
g(s)ds (41)
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determines the outcome of ψ0. From (27), there is η > 0 such that Aψ0 > 0 in (r0, r0 + η),
and we can define

t1 := sup{t > r0 : Aψ0 > 0 on (r0, t)} ∈ (r0, sup J0]. (42)

Recalling the definition of ξ∗ in (5), we now distinguish three regimes for the initial data ξ.
I Assume ξ∗ < ξ < α. Then E0 > G(α) and it follows from Lemma 3.6 and the associated

phase plane analysis that we have ψ′0 < 0, and thus ψ0 < β, on (r0, sup J0).
If t1 = supJ0, there is no more switching and we have to select

u ≡ ψ0 on [r0, sup J0). (43)

Gluing (39) and (43) provides a sign-changing, decreasing and unbounded solution u on
[0, sup J0).

On the other hand, if t1 < sup J0 then t1 is a switching point. In virtue of Lemma 4.1 (ii)
we have ψ0(t1) < −α. After the new switching t1, we thus consider ϕ1(r) := ϕ(r; t1, ψ0(t1))
the solution to (11) on some open interval I1, and we are back to a situation studied above.
Gluing ϕ0, ψ0 and ϕ1 provides again a sign-changing, decreasing and unbounded solution u
on [0, sup I1).

I Assume ξ = ξ∗. Then E0 = G(α) and it follows from Lemma 3.6 that we have ψ′0 < 0,
and thus ψ0 < β on (r0,+∞), and ψ0(+∞) = −α. From Lemma 4.1 (ii) there is no more
switching and we have to select

u ≡ ψ0 on [r0,+∞). (44)

This provides a sign-changing, decreasing and bounded solution with u(+∞) = −α.
I Assume β < ξ < ξ∗. Then E0 < G(α) and it follows from Lemma 3.6 that ψ0 is

periodic. More precisely from Lemma 3.6 there are r0 < a < b < c < d such that ψ′0 < 0 on
(r0, b), ψ0(a) = −β, ψ0(b) = −M0 ∈ (−α,−β), ψ′0 > 0 on (b, d], ψ0(c) = −β, ψ0(d) = 0 (see
Figure 3). In particular Aψ0(d) = −1

dψ
′
0(d) < 0 so that t1 < d. By definition of t1 we have

Aψ(t1) = 0, (Aψ)′(t1) ≤ 0. Using again (19), (20), and (21), we see that (Aψ)′(t1) = 0 would
imply (Aψ)′′(t1) > 0 which is a contradiction. Hence (Aψ)′(t1) < 0 and t1 is a switching point
so that, according to Lemma 4.1 (ii), ψ0(t1) ∈ (−β, 0) with ψ′0(t1) > 0 that is c < t1 < d. We
thus select

u ≡ ψ0 on [r0, t1]. (45)

Second switch at r = t1. We now consider ϕ1(r) := ϕ(r; t1, ψ0(t1)) the solution to (11),
defined on some open interval I1 containing t1. From −β < ψ0(t1) < 0 and Lemma 3.1, we
know that sup I1 = +∞ and that Aϕ1 < 0 on (r1,+∞). There is no more switching point
and we have to select

u ≡ ϕ1 on [t1,+∞). (46)

As a conclusion, when β < ξ < ξ∗, gluing (39), (45) and (46) provides a sign-changing,
decreasing-increasing and localized solution, as in Figure 3.

Collecting the above results of this section, we have proved Theorem 2.5 on radial solutions
when k = 1.
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u(r)

r

α

β

−β

−α

ξ

r0

a b c t1

ϕ0

ψ0

ϕ1

Figure 3: A cartoon of the solution starting from β < ξ < ξ∗ when k = 1, and possibly from
β < ξ < ξ when k ≥ 2 (in this case ψ0(b) ∈ (−β, 0) is not excluded). The solution starts as
ϕ0, switches at r = r0 to ψ0, and switches at r = t1 to ϕ1.

4.2.2 Switch at r = r0 when k ≥ 2

We now consider ψ0(r) := ψ(r; r0, β,− r0
k g(β)) the solution to (17), that is

ψ′′0 + k−1
r ψ′0 + g(ψ0) = 0,

ψ0(r0) = β,
ψ′0(r0) = − r0

k g(β),

(47)

defined on some open interval J0 containing r0.
Exactly as in the k = 1 case, we can define

t1 := sup{t > r0 : Aψ0 > 0 on (r0, t)} ∈ (r0, sup J0]. (48)

We now distinguish three regimes for the initial data ξ. Obviously there is a one-to-one
relation between r0 ∈ (0,+∞) and ξ ∈ (β, α) through (38). Hence, r0 ≥ r∗∗0 ≥ r0, from (25)

in Theorem 3.8, provide some ξ ≥ ξ∗∗ ≥ ξ in (β, α), which are those appearing in Theorem
2.6 item (v). The arguments are then very comparable to the k = 1 case and they are only
sketched.

I Assume ξ < ξ < α, corresponding to r0 > r0 through (38). Then it follows from
Theorem 3.8 (iii) that we have ψ′0 < 0, and thus ψ0 < β, on (r0, sup J0).

If t1 = supJ0, there is no more switching and we have to select

u ≡ ψ0 on [r0, sup J0). (49)

Gluing (39) and (49) provides a sign-changing, decreasing and unbounded solution u on
[0, sup J0).

On the other hand, if t1 < sup J0 then it is a switching point and ψ0(t1) < −α. After the
new switching t1, we thus consider ϕ1(r) := ϕ(r; t1, ψ0(t1)) the solution to (11) on some open
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interval I1, and we are back to a situation studied above. Gluing ϕ0, ψ0 and ϕ1 provides
again a sign-changing, decreasing and unbounded solution u on [0, sup I1).

I Assume ξ = ξ∗∗ corresponding to r0 = r∗∗0 through (38). Then it follows from Theorem
3.8 (ii) that we have ψ′0 < 0, and thus ψ0 < β, on (r0,+∞) and ψ0(+∞) = −α. From Lemma
4.1 (ii), there is no more switching, t1 = +∞, and we have to select

u ≡ ψ0 on [r0,+∞). (50)

This provides a sign-changing, decreasing and bounded solution with u(+∞) = −α.
I Assume β < ξ < ξ corresponding to 0 < r0 < r0 through (38). Then it follows from

Theorem 3.8 (i) that ψ0 is trapped, global, oscillating and localized. In particular, there are
r0 < b < d such that ψ′0 < 0 on (r0, b), ψ0(b) = −M0 ∈ (−α, 0), ψ′0 > 0 on (b, d], ψ0(d) = 0.
In particular Aψ0(d) = −k

dψ
′
0(d) < 0 so that t1 < d. By definition of t1 we have Aψ(t1) = 0,

(Aψ)′(t1) ≤ 0. Using again (19), (20), and (21), we see that (Aψ)′(t1) = 0 would imply
(Aψ)′′(t1) > 0 which is a contradiction. Hence (Aψ)′(t1) < 0 and t1 is a switching point so
that, according to Lemma 4.1 (ii), ψ0(t1) ∈ (−β, 0) with ψ′0(t1) > 0. We thus select

u ≡ ψ0 on [r0, t1]. (51)

Second switch at r = t1. We now consider ϕ1(r) := ϕ(r; t1, ψ0(t1)) the solution to (11),
defined on some open interval I1 containing t1. From −β < ψ0(t1) < 0 and Lemma 3.1, we
know that sup I1 = +∞ and that Aϕ1 < 0 on (r1,+∞). Hence there is no more switching
point and we have to select

u ≡ ϕ1 on [t1,+∞). (52)

As a conclusion, when β < ξ < ξ, gluing (39), (51) and (52) provides a sign-changing,
decreasing-increasing and localized solution, possibly as in Figure 3.

Collecting the above results of this section, we have proved Theorem 2.6 on radial solutions
when k ≥ 2.

4.3 Further comments

The role of the shape of g. Observe that a radial solution always satisfies

u′(r) ≤ − r
k
g(u(r)).

Indeed, for the FOE this is obviously an equality while, for the SOE, the inequality comes
from Au ≥ 0. This has two consequences for a nonconstant solution u. First, u′(r) < 0 for all
r > 0 such that g(u(r)) > 0; second u′(r) can vanish if g(u(r)) < 0 only and, if so, u follows
the SOE and u′′(r) > 0. On the other hand, as revealed above, the possibility of switching,
as well as the choice of the “starting” equation at r = 0, depends mainly on the sign of the
product gg′.

Building on this, one may handle more complicated shapes for the nonlinearity g. Nev-
ertheless, for the sake of clarity, we restricted ourselves to Assumption 2.1 which already
includes the most classical bistable nonlinearities.

Solutions starting at r0 > 0. Obviously, the machinery we have developed to construct
radial solutions on balls B(0, R) can be applied for domains of the form {x ∈ RN : 0 < r0 <
|x| < R ≤ +∞}.
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One may then wonder if those solutions can be extended “towards the left” (at least
slightly). Building on (12)-(13), (19)-(20)-(21), and Lemma 4.1, one can convince oneself
(details are omitted) that the solutions that cannot be extended towards the left are (i) the
ones starting with the SOE and from u(r0) = ξ, u′(r0) = − r0

k g(ξ), where ξ ∈ (−α,−β) ∪
(0, β) ∪ (α,+∞); (ii) the ones starting with the FOE and from u(r0) = −β.

Overlapping solutions. There are switching points (r0, ξ) that are reached by two solutions,
different for r < r0 but equal for r ≥ r0.

Indeed, consider a decreasing solution of type (v)-(a) in Theorems 2.5 and 2.6, which
switches from SOE to FOE at some r0 with u(r0) < −α (one can prove that this always
occurs when g(u)→ +∞ as u→ −∞). This solution encounters a solution u that follows the
FOE on [0, r0), of the type (ii) in Theorems 2.5 and 2.6, and coincides with u for r ≥ r0.

This phenomenon also applies to solutions not defined at r = 0.
For instance, consider a solution of type (v) in Theorems 2.5 and 2.6: in particular it

switches from FOE to SOE at some r0 > 0 with u(r0) = β, u′(r0) = − r0
k g(β), see the above

constructions and Figure 3. This solution encounters a solution u that follows the SOE on
the left of r0 and coincides with u for r ≥ r0. On the left of r0, u(≡ ψ) is defined either on
[s0, r0] for some 0 < s0 < r0 and is not defined for r < s0, or on (r0, s0] for some 0 ≤ s0 < r0
and u(r)→ +∞ as r → s+0 .

Similarly, consider a solution of type (v)-(c) in Theorems 2.5 and 2.6: in particular, it
switches from SOE to FOE at some t1 > 0 with u(t1) ∈ (−β, 0), u′(t1) = − t1

k g(u(t1)) > 0,
see the above constructions and Figure 3. This solution encounters a solution u that follows
the FOE on the left of t1 and coincides with u for r ≥ t1. On the left of t1, u(≡ ϕ) is defined
on [t0, t1] for some 0 < t0 < t1, with ϕ(t0) = −β, and is not defined for r < t0.
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