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1. Introduction

In this paper we study the behavior, as ε → 0, of the solution uε(x, t) of the
Allen-Cahn type equation

(P ε)

uεt = ∆uε +
1

ε2
f(uε) in RN × (0,∞)

uε(x, 0) = u0(x) in RN ,

where N ≥ 2. Here, the nonlinearity is given by f(u) := −W ′(u), where W (u)
is a double-well potential with equal well-depth, taking its global minimum value
at u = α∗, u = β∗. More precisely we assume that f is C2 and has exactly three
zeros α∗ < a < β∗ such that

f ′(α∗) < 0, f ′(a) > 0, f ′(β∗) < 0 (bistable nonlinearity) , (1.1)∫ β∗

α∗
f(u) du = 0 (balanced case) . (1.2)

The condition (1.1) implies that the potential W (u) attains its local minima at
u = α∗, u = β∗, and (1.2) implies that W (α∗) = W (β∗). In other words, the two
stable zeros of f , namely α∗ and β∗, have “balanced” stability. A typical example
is the cubic nonlinearity f(u) = u(1− u2).

As for the initial data u0, we assume that it is bounded and of class C2 on
RN . Furthermore we define the “initial interface” Γ0 by

Γ0 := {x ∈ RN : u0(x) = a} ,

and suppose that
Γ0 is a smooth hypersurface without boundary of RN ,
∇u0(x) 6= 0 for all x ∈ Γ0 ,

u0 > a in Ω0 and u0 < a in (Ω0 ∪ Γ0)c ,

(1.3)

where Ω0 denotes the region enclosed by Γ0. The non-zero gradient assumption
in (1.3) is needed to obtain fine estimates for the development of steep transition
layers at the very beginning period.
Heuristics. As ε → 0, a formal asymptotic analysis shows the following: in the
very early stage, the diffusion term ∆uε is negligible compared with the reaction
term ε−2f(uε) so that, in the rescaled time scale τ = t/ε2, the equation is well
approximated by the ordinary differential equation uετ = f(uε). Hence, in view of
the profile of f , the value of uε quickly becomes close to either β∗ or α∗ in most part
of RN , creating a steep interface (transition layer) between the regions {uε ≈ α∗}
and {uε ≈ β∗} (Generation of interface). Once such an interface develops, the
diffusion term becomes large near the interface, and comes to balance with the
reaction term. As a result, the interface ceases rapid development and starts to
propagate in a much slower time scale (Motion of interface).
Convergence to classical motion by mean curvature. The singular limit of the
Allen-Cahn equation was first studied in the pioneering work of Allen and Cahn
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[2] and, slightly later, in Kawasaki and Ohta [18] from the point of view of physi-
cists. They derived the interface equation by formal asymptotic analysis, thereby
revealing that the interface moves by its mean curvature. More precisely, the limit
solution ũ(x, t) turns out to be a step function taking the value β∗ on one side of
the interface, and α∗ on the other side. This sharp interface, which we will denote
by Γt, obeys the following law of motion:

(P 0
classical)

{
Vn = −(N − 1)κ on Γt

Γt
∣∣
t=0

= Γ0 ,

where Vn is the normal velocity of Γt in the exterior direction, κ the mean curvature
at each point of Γt (chosen to be positive when Γt encloses a convex region). If
Γ0 is smooth enough, it is well known that (P 0

classical) possesses locally in time a
unique smooth solution. For more details, see [11] and the references therein.

These early observations triggered a flow of mathematical studies aiming
at rigorous justification of the above limiting procedure; see, for example, [19,
20], [9] and [10] for results on the convergence of the partial differential equation
(P ε) to the free boundary Problem (P 0

classical). Later, in [1], the authors prove an
improved estimate for this convergence for solutions with general initial data. By
performing a rigorous analysis of both the generation and the motion of interface,
they show that the solution develops a steep transition layer within the time scale
of O(ε2| ln ε|), and that the layer obeys the law of motion that coincides with the
formal asymptotic limit (P 0

classical) within an error margin of O(ε) (previously, the
best thickness estimate in the literature was of O(ε| ln ε|), [10]).

Generalized motion by mean curvature. Nevertheless, it is well-known that the
classical motion by mean curvature may develop singularities in finite time, even
if Γ0 is smooth. In R2, an embedded curve evolving by its curvature can develop
singularities only at the time of “shrinking to a point” [17]. In R3, singularities
may even occur before “shrinking to a point”: for instance, the boundary of a
“dumbbell-shaped” region pinches off in finite time, if the neck is narrow enough.
Therefore the classical framework is not sufficient for dealing with such phenomena.
Thus, one has to introduce a generalized notion of the motion by mean curvature
(MMC). This enables to define the MMC past the development of singularities
and to study the singular limit of reaction-diffusion equations for all t ≥ 0.

To define such a generalized MMC, the level set approach is quite conve-
nient: one represents Γt as the level set of an auxiliary function which solves (in
the viscosity sense) a nonlinear partial differential equation. This direct partial
differential equation approach has been developed by Evans and Spruck [15], and,
independently, by Chen, Giga and Goto [12]. In this framework, the involved par-
tial differential equation is the degenerate, and even singular in the points where
Dv = 0, parabolic problem given by

(P 0)

{
vt − tr

[
(I − D̂v ⊗ D̂v)D2v

]
= 0 in RN × (0,∞)

v = d0 in RN × {t = 0} ,
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with p̂ := p
|p| , and d0 the truncated signed distance function to Γ0, which is positive

in the set {u0 > a} and negative in the set {u0 < a}. If v is a viscosity solution
of (P 0), then each level set of v evolves according to the mean curvature in a
certain generalized sense, and also in the classical sense whenever Dv does not

vanish. Note that the equation can be written vt − ∆v + D2vD̂v · D̂v = 0 or

vt = |Dv|div
(
Dv
|Dv|

)
. We refer to Section 3 for a short overview of the techniques

and results of [15] and [12].

Convergence to generalized motion by mean curvature. Let us make a brief over-
view of known results on the convergence of the Allen-Cahn equation to generalized
MMC. Evans, Soner and Souganidis [14] prove that, as ε→ 0, the solution of (P ε)
converges to β∗ locally uniformly in {v > 0} and to α∗ locally uniformly in {v < 0},
where v is the solution of (P 0). Since Γt := {x ∈ RN : v(x, t) = 0} moves, in a
weak sense, by mean curvature, this result is the natural generalization of the
convergence to classical MMC mentioned above. Barles, Bronsard and Souganidis
[5], Barles, Soner and Souganidis [7] generalized the result of [14] by allowing (x, t)-
dependent nonlinearities and/or considering the unbalanced case instead of (1.2).
Nevertheless, these early results consider only a very restricted class of initial data,
namely those having a specific profile with well-developed transition layer. In other
words the generation of interface from arbitrary initial data is not studied there.

Later, Soner [21, 22], Barles and Souganidis [8], Barles and Da Lio [6] study
both the generation and the motion of interface; they prove the convergence of
a large class of reaction-diffusion equations. By using the so-called “open set ap-
proach”, the authors in [8] and [6] also provide a new definition for the global in
time propagation of fronts; this definition turns out to be equivalent to the level
set approach when there is no fattening of the interface.

From the above results, we know that the transition layers of uε converge to a
level set of v, the solution of (P 0), as ε→ 0, for all t ≥ 0. However, no fine estimate
of the convergence rate nor the thickness of the transition layers of the solutions
to (P ε), for all t ≥ 0, exists. This is in contrast to the classical framework, for
which O(ε) estimates are known, as long as the limit interface remains smooth.

Overview of the main results. In the present paper we obtain sharp estimates
on the transition layers of solutions uε to Problem (P ε), for all t ≥ 0. Allowing
arbitrariness of the initial data (i.e. not necessarily well-prepared initial data),
we prove that — in a sense to be made precise later— the convergence rate is
O(ε| ln ε|). The body of this estimate is Section 4 where precise Allen-Cahn barriers
are constructed by mixing and refining ideas from [14] and [1]. Then, under a
geometric assumption on the “initial domain”, we prove an O(ε| ln ε|) estimate of
the location and the thickness of the transition layers. To our knowledge, these
are the first sharp estimates — for the Allen-Cahn layers— which hold even after
singularities have occurred in MMC. Note that, in order to deal with extinction and
pinches off phenomenon, the thickness is measured in space-time. This is achieved
in Section 5. In the next section, we discuss and precisely present these results.
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2. Main results and comments

2.1. Results

We consider the solution uε of the Allen-Cahn equation (P ε) with initial data
u0 independent of ε. As mentioned before, uε quickly develops a steep transition
layer. The time needed for such a generation (see Section 4) is

tε := f ′(a)−1ε2| ln ε| (generation time) , (2.1)

after which the transition layer starts to move approximately by the mean cur-
vature. Theorem 2.1 is a first fine description of this motion of the Allen-Cahn
transition layer: we show that it can be sandwiched between two sharp “inter-
faces” moving by mean curvature, provided that these “interfaces” sandwich at
t = 0 an O(ε| ln ε|) neighborhood of the initial layer.

In the sequel, we take two families of (not necessarily smooth) hypersurfaces
without boundaries (γ−ε,0)ε>0, (γ+ε,0)ε>0, which sandwich an O(ε| ln ε|) neighbor-
hood of Γ0, and such that

γ−ε,0 << Γ0 << γ+ε,0 ,

where Γ1 << Γ2 means that Γ1 is enclosed by Γ2 and Γ1 ∩Γ2 = ∅. More precisely,
we consider two families of open sets (ω−ε,0)ε>0, (ω+

ε,0)ε>0, such that

{x ∈ RN : dist(x, ω−ε,0) ≤ C0ε| ln ε|} ⊂ Ω0 , (2.2)

{x ∈ RN : dist(x,Ω0) ≤ C0ε| ln ε|} ⊂ ω+
ε,0 , (2.3)

for some constant C0 > 0 not depending on ε and to be specified in (4.32). Then
we define

γ±ε,0 := ∂ω±ε,0 and {γ±ε,t}t≥0 := the generalized MMC starting from γ±ε,0 ,

(see Section 3). In the same way as we define Ωt as the “inside at time t” of Γt in
(3.4), we define ω±ε,t as the “inside” of γ±ε,t by replacing Γ0 in (3.1) by γ±ε,0.

Theorem 2.1 (“Sandwiching” the Allen-Cahn layers). Let f ∈ C2(R) satisfy (1.1)
and (1.2), and let u0 ∈ C2

b (RN ) be such that (1.3) holds. Let (ω−ε,0)ε>0, respec-

tively (ω+
ε,0)ε>0, be any family of open sets satisfying (2.2), respectively (2.3). Let

{ω−ε,t}t≥0 and {ω+
ε,t}t≥0 be defined as above. Fix ζ ∈ (0,min(a− α∗, β∗ − a)) arbi-

trarily. Then, for ε > 0 small enough,
α∗ − ζ ≤ uε(x, t) ≤ β∗ + ζ for all x ∈ RN

β∗ − ζ ≤ uε(x, t) ≤ β∗ + ζ for all x ∈ ω−ε,t ∪ γ−ε,t
α∗ − ζ ≤ uε(x, t) ≤ α∗ + ζ for all x /∈ ω+

ε,t ,

(2.4)

for all t ≥ tε, where tε is as in (2.1).

In the sequel, for α ∈ (α∗, β∗), we define the sets

Ωεt (α) := {x ∈ RN : uε(x, t) > α} and Ω̃εt (α) := {x ∈ RN : uε(x, t) ≥ α} .
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Roughly speaking, given α < β in (α∗, β∗), Γεt (α, β) := Ω̃εt (α) \ Ωεt (β) represents
the transition layer of the Allen-Cahn solution uε, namely the “zone” α ≤ uε ≤ β.
As an immediate consequence of Theorem 2.1 we can localize these sets in terms
of ω−ε,t, γ

−
ε,t and ω+

ε,t.

Corollary 2.2 (“Sandwiching” the Allen-Cahn layers). Let the assumptions of The-
orem 2.1 hold. Fix α < β in (α∗, β∗) arbitrarily. Then, for ε > 0 small enough,

(ω−ε,t ∪ γ−ε,t) ⊂ Ωεt (β) ⊂ Ω̃εt (α) ⊂ ω+
ε,t , (2.5)

for all t ≥ tε, where tε is as in (2.1).

The statement (2.5) gives lower and upper estimates for the Allen-Cahn layer
Γεt (α, β), but it does not necessarily give fine estimate for the location nor the
thickness of the layer. To explain this, let {Γt}t≥0 denote the generalized MMC
starting from Γ0 = ∂Ω0 (see Section 3) and define, as in (3.4), Ωt as the “inside at
time t” of Γt. Assume (which is natural) that (2.2) and (2.3) are sharp — in the
sense that γ−ε,0 and γ+ε,0 actually lie in an O(ε| ln ε|) neighborhood of Γ0. Then, for
every t ≥ 0 the property

lim
ε→0

(ω−ε,t ∪ γ−ε,t) = Ωt and lim
ε→0

ω+
ε,t = Ωt ∪ Γt , (2.6)

follows as an immediate consequence of the continuity of the viscosity solution
of (P 0) with respect to the initial data (see [15] or [3]). Thus (2.5) implies, in
particular, that, for any α < β in (α∗, β∗),

lim sup
ε→0

Γεt (α, β) ⊂ Γt . (2.7)

However, no precise estimate of the convergence rate in (2.6) is known in general.
Note that this is the case even if all the MMC starting from “neighbors”of Γ0 are
regular (in the sense of (A.1) in Appendix). Therefore Theorem 2.1 does not give
good convergence rate for (2.7). Nevertheless, as we explain below, explicit fine
estimates can be derived for admissible initial domains (see [7, Theorem 4.3] for
the introduction of a similar notion).

Definition 2.3 (Admissible domains). Let Ω0 be a domain (=a bounded open set)
in RN whose boundary Γ0 := ∂Ω0 is a smooth hypersurface without boundary.
We say that Ω0 is admissible if there exists a1 ≥ 0, a2 ≥ 0 and a skew-symmetric
matrix Z such that, for all x ∈ Γ0,

(−a1x+ Zx− a2(N − 1)κ(x)n(x)) · n(x) < 0 , (2.8)

where n(x) the unit outer normal to Ω0 at x.

Remark 2.4. Assume Ω0 is admissible. For t ≥ 0, define the evolution operator
Φt : Γ0 7→ Γt, where {Γt}t≥0 denotes the generalized MMC starting from Γ0 =
∂Ω0. Then, for ν ≥ 0, define

ψν(Γ0) := eνZ [e−a1νΦa2ν(Γ0)] ,

obtained by letting Γ0 evolve by its mean curvature for the time a2ν, then dilating
by factor e−a1ν , and rotating by the matrix eνZ ∈ SOn(R). Since eνZ , e−a1ν ,



Convergence rate of the Allen-Cahn equation 7

Φa2ν are commutative, one can check that the collection (ψν(Γ0))0≤ν≤ν0 , with
ν0 > 0 small enough, has the semigroup property ψν′(ψν(Γ0)) = ψν′+ν(Γ0) when
ν′ + ν ≤ ν0. Moreover the infinitesimal generator evaluated at x ∈ Γ0 is G(x) :=
−a1x+Zx−a2(N −1)κ(x)n(x). In view of (2.8) and the compactness of Γ0, there
is δ > 0 such that G(x) · n(x) ≤ −δ for all x ∈ Γ0. If follows that, by choosing
ν0 > 0 small if necessary,

0 ≤ ν < ν′ ≤ ν0 =⇒ ψν′(Γ0) << ψν(Γ0) , (2.9)

and that there is Ĉ0 > 0 such that, for all 0 ≤ ν ≤ ν0, dist(ψν(Γ0),Γ0) ≥ Ĉ0ν.

Before proceeding further, let us emphasize one important difference between
the classical MMC and the generalized one. In the classical framework, one first
defines [0, Tmax) to be the maximal time-interval on which Γt remains smooth,
and then picks up an arbitrary closed sub-interval 0 ≤ t ≤ T < Tmax, on which
the derivatives of Γt remain uniformly bounded. In this time range one can get a
good convergence rate for (2.6) for each 0 ≤ t ≤ T , because of the smoothness of
Γt. And we even have an optimal estimate as dHRN

(Γεt (α, β),Γt) = O(ε), where
dHRN

denotes the Hausdorff distance (see [1], as mentioned before). However, in
the generalized framework, such fine estimates collapse whenever Γt develops a
singularity. For example, consider two dumbbell-shaped hypersurfaces γ−ε,0 << Γ0

whose Hausdorff distance dHRN
(γ−ε,0,Γ0) is very small, say of O(ε| ln ε|). Within

finite time the “neck” of the smaller dumbbell γ−ε,t pinches off, splitting the hy-
persurface into two parts. Shortly after, before Γt also pinches off, the Hausdorff
distance dHRN

(γ−ε,t,Γt) is rather large compared with the distance at t = 0.
Therefore, in order to get fine quantitative estimates in the presence of singu-

larities, the spatial distance at each fixed time slice is not the right measurement
to use. It turns out that, by using the space-time distance, we can overcome this
difficulty, at least for admissible initial domains. For this purpose, we define the
“space-time insides”

ω±ε := ∪t≥0(ω±ε,t × {t}) , Ω := ∪t≥0(Ωt × {t}) ,
and the “space-time interface”

Γ := {(x, t) ∈ RN × [0,∞) : v(x, t) = 0} , (2.10)

with v the viscosity solution of (P 0).
When Ω0 is admissible, there is a constant C > 0 such that, for the approx-

imating domains (ω−ε,0)ε>0, (ω+
ε,0)ε>0 satisfying (2.2), and (2.3) respectively, we

have
dHRN+1

(γ±ε ,Γ) ≤ CdHRN
(γ±ε,0,Γ0) ,

where dHRN+1
denotes the Hausdorff distance in the space-time RN+1 (see Section

5 for details). Combining this and Theorem 2.1, we can obtain the following fine
description of the Allen-Cahn layers for admissible initial domains.

Theorem 2.5 (Fine estimates for admissible initial domains). Let f ∈ C2(R) satisfy
(1.1) and (1.2), and let u0 ∈ C2

b (RN ) be such that (1.3) holds. Assume moreover
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that Ω0 is admissible. Fix ζ ∈ (0,min(a − α∗, β∗ − a)) arbitrarily. Then, there is
C > 0 such that, for ε > 0 small enough, for all x ∈ RN and all t ≥ tε,

uε(x, t) ∈


[α∗ − ζ, β∗ + ζ] if (x, t) ∈ RN × [tε,∞)

[β∗ − ζ, β∗ + ζ] if (x, t) ∈ Ω \ NCε| ln ε|(Γ)

[α∗ − ζ, α∗ + ζ] if (x, t) ∈ (Ω ∪ Γ)c \ NCε| ln ε|(Γ)

(2.11)

where Nr(A) := {(x, t) ∈ RN × [0,∞) : dist((x, t),A) < r} denotes the r-
neighborhood of the set A in RN × [0,∞), and tε is as in (2.1).

Now, for α < β in (α∗, β∗), we define the “zone” α ≤ uε ≤ β by

Γε(α, β) := {(x, t) ∈ RN × [tε,∞) : α ≤ uε(x, t) ≤ β} ,

which more or less represents the transition layer of the Allen-Cahn solution uε in
space-time. Then the following holds as a direct consequence of Theorem 2.5.

Corollary 2.6 (Location and thickness of the layers). Let f ∈ C2(R) satisfy (1.1)
and (1.2), and let u0 ∈ C2

b (RN ) be such that (1.3) holds. Assume moreover that
Ω0 is admissible. Fix α < β in (α∗, β∗) arbitrarily. Then there is C > 0 such that,
for ε > 0 small enough,

Γε(α, β) ⊂ NCε| ln ε|(Γ) . (2.12)

Note that (2.12) does not only give fine estimates for the location of the
Allen-Cahn layer Γε(α, β), but it also gives fine estimates for its thickness. Indeed,
under the assumption of Ω0 being admissible, Γ is known to have no interior [7,
Theorem 4.3]; in other words, the so-called fattening phenomenon does not occur
for Γ. Therefore (2.12) provides an O(ε| ln ε|) estimate of the thickness of the
Allen-Cahn layer.

Incidentally, if Ω0 is admissible, not only Γ is known to have no interior, but
it is also known to be regular from inside, that is, ClRN+1 [Ω] = Ω ∪ Γ, where
ClRN+1 [A] denotes the closure of the set A in RN+1 [16, Corollary 4.5.11]. In fact,
one can also prove that Γ is regular both from inside and from outside if the initial
domain is admissible (see Appendix).

Note that Theorem 2.5 allows Ωt to pinch off, as will be clear from Example
2.9 below. Note also that Theorem 2.5 holds even after the extinction time t∗ of
the solution of the MMC starting from the initial interface Γ0. Therefore, in the
admissible case, we can provide an answer to the question: how quickly does uε

approach α∗ after the extinction of the interface Γt?

Corollary 2.7 (Behavior after the extinction time). Let f ∈ C2(R) satisfy (1.1)
and (1.2), and let u0 ∈ C2

b (RN ) be such that (1.3) holds. Assume moreover that
Ω0 is admissible. Fix ζ ∈ (0,min(a−α∗, β∗− a)) arbitrarily. Then, there is C > 0
such that, for ε > 0 small enough,

|uε(x, t)− α∗| ≤ ζ , (2.13)

for all x ∈ RN , t ≥ t∗ +Cε| ln ε|, with t∗ > 0 the extinction time defined in (3.7).
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2.2. Examples of admissible and non-admissible domains

In what follows Ω0 is always assumed to be a domain (=a bounded open set) in
RN with smooth boundary Γ0. Here are some examples of admissible domains but
also an example of a domain which cannot satisfy (2.8).

Example 2.8 (Strongly star-shaped domains). A domain Ω0 is called strongly star-
shaped with respect to the origin 0, if it is star-shaped with respect to 0, and if
every ray emanating from 0 intersects Γ0 transversely. The above condition is
equivalent to x · n(x) > 0, for all x ∈ Γ0. Thus, any strongly star-shaped domain
is admissible with (a1, a2, Z) = (1, 0, 0).

Example 2.9 (Dumbbell-shaped domains). For N ≥ 3, let Ω0 consist of a pair of
disjoint bounded open sets D1, D2 and a narrow channel D3 connecting D1, D2.
For simplicity, we assume that Ω0 is rotationally symmetric around the x1-axis and
given in the form Ω0 := {0 ≤ r < g(x1)}, r = (x2

2 + · · · + xN
2)1/2, where g is a

function satisfying g > 0 on (−L,L), g(±L) = 0 and g′(±L) = ∓∞. Furthermore,
for some 0 < L1 < L2 < L and 0 < a < 1,

g(x1) = 1 if |x1| ≤ L1

g(x1) = cosh(a(|x1| − L1)) if L1 ≤ |x1| < L2

g′′(x1) < 0 if L2 ≤ |x1| < L .

We then modify g slightly around |x1| = L1 and |x1| = L2 so that g is smooth for
|x1| < L and that Γ0 is a smooth hypersurface (see Figure 1 (left)). Then we can

Figure 1. Dumbbell (left) and diabolo (right).

easily check that, for a ∈ (0, 1) small enough and for some δ > 0,

(N − 1)κ(x) =
1

(1 + (g′(x))2)1/2

(
N − 2

g(x)
− g′′(x)

1 + (g′(x))2

)
≥ δ .

Hence Ω0 is admissible with (a1, a2, Z) = (0, 1, 0). It is well known (see Angenent
[4]) that the generalized MMC starting from such Γ0 pinches off and splits into
two parts if L1 and D1, D2 are large enough — thus creating a singularity .

A different type of dumbbell-shaped domain, which we call a diabolo, can be
constructed within the class of strongly star-shaped domains, that is (a1, a2, Z) =
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(1, 0, 0), see Figure 1 (right). The difference from the previous domain is that the
center neck, namely D3, cannot be too long; on the other hand, the outer end of
D1, D2 need not to be of convex shape. This domain also leads to pinching off if
the center neck is narrow enough.

Example 2.10 (Galaxies). Here Ω0 is a domain in R3 having the shape as in Figure
2. This is constructed by appropriately fattening the 2-dimensional skeleton in

Figure 2. Galaxy and its skeleton.

Figure 2, which consists of a disk at the center and two arms both of which are a
portion of the logarithmic spiral r = eβ(θ−θi) (i = 1, 2), where β > 0, θ1, θ2 are

some constants and r =
√
x2 + y2. It is easily seen that Ω0 is admissible with

a1 = 1 , a2 = 0 , Z =

 0 −β−1 0
β−1 0 0

0 0 0

 .
Example 2.11 (Gearwheels). Here, Ω0 is a smooth 3-dimensional, but nearly flat,
domain whose profile is as in Figure 3, with the origin 0 being the center of the
inner circular hole, and with the z-axis perpendicular to this circle. The inner
part of the boundary Γ0 has positive mean curvature because of the large positive
sectional curvature in the z direction, compared with the small negative sectional
curvature in the rotational direction around the z-axis. The outer part is strongly
star-shaped with respect to 0. With an appropriate combination of the outer shape
and the size of the sectional curvature around the inner part, we see that Ω0 is
admissible with a suitable choice of a1 > 0, a2 > 0 and Z = 0.

Example 2.12 (Non-admissible domain). An example of non-admissible domain in
dimension N = 2 is given in Figure 4. This domain is symmetric with respect to 0
and has two linear parts A and B which are aligned with the axes. Assuming that
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Figure 3. Gearwheel.

Γ0

A

B

Figure 4. Domain not satisfying Definition 2.3.

(2.8) is satisfied for some a1 ≥ 0, a2 ≥ 0 and Z =

[
0 β
−β 0

]
, we would obtain,

for x ∈ A, −β < 0 and, for x ∈ B, β < 0, which is impossible. Note that, for all
x0, this domain is also “not-admissible with respect to x0”, in the sense that it
cannot satisfy (2.8) even if −a1x + Zx is replaced by −a1(x − x0) + Z(x − x0).
Indeed, in this case by symmetry with respect to 0 it would also satisfy the same
inequality with −x0 instead of x0 and, adding both inequalities with x0 and −x0,
we would see that it satisfies the original (2.8).

Organization of the paper. In Section 3, we recall the basic ideas of the level set
approach together with some useful known properties. Section 4 is devoted to
the construction of refined barriers (sub- and super-solutions) for the Allen-Cahn
equation. By quoting a generation of interface result from [1] and using these
barriers, we prove Theorem 2.1. In Section 5, we prove Theorem 2.5. In Appendix,
we present some results on the regularity of the generalized MMC which, to the
best of our knowledge, are not explicitly stated in the literature. They are related
to our singular limit problem but are also interesting by themselves.
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3. Generalized motion by mean curvature

For the convenience of the reader, we briefly recall here the level set approach
which enables to define uniquely a generalized MMC. We also recall some useful
properties of the associated signed distance function. For more details and proofs,
we refer to Evans and Spruck [15], Chen, Giga and Goto [12], Evans, Soner and
Souganidis [14] (from whom we borrow the notations) and the references therein.

Given a compact set Γ0 ⊂ RN , we choose a continuous function g : RN → R,
constant outside some ball and such that

Γ0 = {x ∈ RN : g(x) = 0} . (3.1)

Then, we consider the mean curvature evolution partial differential equation vt −
tr[(I−D̂v⊗D̂v)D2v] = 0 on RN ×(0,∞), which is nonlinear, degenerate and even
undefined in the points where Dv vanishes (recall p̂ := p

|p| ). Nevertheless, Problem

(P 0)

{
vt − tr

[
(I − D̂v ⊗ D̂v)D2v

]
= 0 in RN × (0,∞)

v = g in RN × {t = 0} ,

admits a unique viscosity solution v ∈ C(RN×[0,∞)), constant outside some large
enough ball, and each level set of v evolves according to the mean curvature in a
generalized sense. As far as viscosity solutions are concerned, we refer the reader
to the User’s guide of Crandall, Ishii and Lions [13] and the references therein.

Now, for each t ≥ 0, we define the “interface at time t” by

Γt := {x ∈ RN : v(x, t) = 0} , (3.2)

which is a compact set in RN . Then the collection {Γt}t≥0 does not depend on the
choice of the function g. The family {Γt}t≥0 is called the generalized motion by
mean curvature starting from Γ0. The “space-time interface” Γ, which is defined
in (2.10), can be expressed as Γ = ∪t≥0(Γt × {t}).

Assume moreover that Γ0 is the boundary of a domain Ω0 ⊂ RN , and choose
a continuous function g such that

g(x) > 0 if x ∈ Ω0 , g(x) < 0 if x ∈ (Ω0 ∪ Γ0)c . (3.3)

If v denotes the solution of (P 0), we then define, for each t ≥ 0, the “inside at
time t” by

Ωt := {x ∈ RN : v(x, t) > 0} , (3.4)

which is an open set in RN . We also define the “space-time inside” by Ω := {(x, t) ∈
RN × [0,∞) : v(x, t) > 0} = ∪t≥0(Ωt × {t}).

For the generalized MMC, the following comparison principle is known to
holds (see [15] or [3, Lemma 3.2]):

γ0 << γ̃0 =⇒ (ωt ∪ γt) ⊂ ω̃t ,∀t ≥ 0 . (3.5)
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Here {γt}t≥0, respectively {γ̃t}t≥0, denotes the generalized MMC starting from
γ0, respectively γ̃0, and ωt, respectively ω̃t, denotes the “inside at time t” of γt,
respectively γ̃t. As a consequence,

γ0 << γ̃0 =⇒ (ω ∪ γ) ⊂ ω̃ , (3.6)

where ω, respectively ω̃, denotes the “space-time inside” associated with γt, re-
spectively γ̃t, and γ the “space-time interface”.

Next, let t∗ denote the extinction time, namely

t∗ := inf{t > 0 : Γt = ∅} . (3.7)

Finally, we let d(x, t) be the signed distance function to Γt, defined by

d(x, t) =


dist(x,Γt) if x ∈ Ωt

0 if x ∈ Γt

−dist(x,Γt) if x ∈ (Ωt ∪ Γt)
c ,

(3.8)

for all x ∈ RN , 0 ≤ t ≤ t∗. Note that d is well-defined at time t = t∗ (because of
the continuity of v), and that d may be not continuous in time (for instance, if Γt
is made of two pieces, one “disappearing” before the other).

As proved in [14], the signed distance function d is a viscosity super-solution,
sub-solution, of the heat equation in the set {d > 0}, {d < 0} respectively.

Lemma 3.1. We have, in the viscosity sense,

dt −∆d ≥ 0 in Ω ∩ (RN × (0, t∗]) , (3.9)

dt −∆d ≤ 0 in (Ω ∪ Γ)c ∩ (RN × (0, t∗]) . (3.10)

4. Refined Allen-Cahn barriers

The goal of this section is to show that, for any generalized MMC {γt}t≥0, there is
a super-solution of (P ε) whose transition layer lies inside of γt within distance of
O(ε| ln ε|), and a sub-solution of (P ε) whose transition layer lies outside of γt within
distance of O(ε| ln ε|). The results are stated in the following propositions which
are fundamental for our analysis. Combining these propositions with a generation
of interface result proved in [1], we will prove Theorem 2.1 in subsection 4.3. Note
that the constant λ > 0 which appears below is completely determined by the
underlying travelling wave solution (see Lemma 4.4).

Proposition 4.1 (Super-solutions). Let (γ0, ω0) be an arbitrary pair with γ0 the
boundary of the domain ω0 ⊂ RN . Denote by {γt}t≥0, {ωt}t≥0 the associated
“interface at time t”, “inside at time t” respectively. Denote by d(x, t) the signed
distance function to γt (see Section 3). Fix ζ > 0 arbitrarily small and T > 0
arbitrarily. Then, for all ε > 0 small enough, there is a function w+

ε (x, t) such
that

(i) w+
ε is a viscosity super-solution of the Allen-Cahn equation on RN × (0, T ]
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(ii) w+
ε has, for all t ≥ 0, the following upper bounds:{

w+
ε (x, t) ≤ β∗ + ζ for all x ∈ RN

w+
ε (x, t) ≤ α∗ + ζ for all x /∈ ωt

(4.1)

(iii) w+
ε (·, 0) has the following lower bounds:{
α∗ + ζ

3 ≤ w
+
ε (x, 0) for all x ∈ RN

β∗ + ζ
3 ≤ w

+
ε (x, 0) for all x such that d(x, 0) ≥ 8

λε| ln ε| .
(4.2)

Proposition 4.2 (Sub-solutions). Let the notations of Proposition 4.1 hold. Fix
ζ > 0 arbitrarily small and T > 0 arbitrarily. Then, for all ε > 0 small enough,
there is a function w−ε (x, t) such that

(i) w−ε is a viscosity sub-solution of the Allen-Cahn equation on RN × (0, T ]
(ii) w−ε has, for all t ≥ 0, the following lower bounds:{

α∗ − ζ ≤ w−ε (x, t) for all x ∈ RN

β∗ − ζ ≤ w−ε (x, t) for all x ∈ ωt ∪ γt
(4.3)

(iii) w−ε (·, 0) has the following upper bounds:{
w−ε (x, 0) ≤ β∗ − ζ

3 for all x ∈ RN

w−ε (x, 0) ≤ α∗ − ζ
3 for all x such that d(x, 0) ≤ − 8

λε| ln ε| .
(4.4)

One of the role of such a pair of sub- and super-solution shall be to control
the solution uε to (P ε) during the latter time range — after the generation of
interface— when the motion of interface occurs. In the sequel we prove Proposition
4.1, the proof of Proposition 4.2 being similar. We begin with some preparations.

4.1. Some preliminaries

A modified signed distance function. Let d be the signed distance function to an
arbitrary generalized MMC. In order to construct super-solutions of (P ε) involving
the signed distance function, it is necessary to cut-off d in the set {d < 0}, where
it is a sub-solution of the heat equation (Lemma 3.1). To that purpose, we slightly
improve the cut-off argument used in [14].

In the following, θ(ε) is a positive function defined for ε ∈ (0, ε0), ε0 > 0
small enough; its possible explicit forms will be indicated later. Consider a smooth
auxiliary function η = ηε : R→ R satisfying

η(z) = −θ(ε) for all −∞ < z ≤ 1
4θ(ε) ,

η(z) = z − θ(ε) for all z ≥ 1
2θ(ε) ,

0 ≤ η′ ≤ C and |η′′| ≤ C/θ(ε) ,
(4.5)

where C is a constant independent of ε. Rather than d we shall use η(d), for the
construction of our super-solutions.



Convergence rate of the Allen-Cahn equation 15

1
2θ(ε)

−θ(ε)

z

η(z)

Figure 5. Graph of η.

From [14, Lemma 3.1], there is a constant C > 0 such that, for all ε ∈ (0, ε0),

η(d)t −∆η(d) ≥ − C

θ(ε)
in RN × (0, t∗] , (4.6)

η(d)t −∆η(d) ≥ 0 in

{
d >

1

2
θ(ε)

}
⊂ RN × (0, t∗] , (4.7)

in the viscosity sense (which, in particular, contains the fact that η(d) is lower semi
continuous). For our results to hold after the extinction time, we need to extend
η(d(x, t)) to all times. By abusing the notations slightly, we define

η(d(x, t)) =

{
η(d(x, t)) if t ≤ t∗

−θ(ε) if t > t∗ .
(4.8)

Let us notice that, from the definition of t∗, d(x, t∗) ≤ 0 for all x ∈ RN . But, as
proved in [14], d is continuous from below (with respect to time) on RN × (0, t∗];
therefore there is a neighborhood of (x, t∗) in RN × (0, t∗] on which η(d) ≡ −θ(ε).
It is thus clear that (4.6)—(4.7) still hold for t > t∗, for the extension (4.8).

Lemma 4.3. There is a constant C > 0 such that, for all ε ∈ (0, ε0),

η(d)t −∆η(d) ≥ − C

θ(ε)
in RN × (0,∞) , (4.9)

η(d)t −∆η(d) ≥ 0 in

{
d >

1

2
θ(ε)

}
⊂ RN × (0,∞) . (4.10)

A standing wave. We shall also need U0(z) the unique solution of the stationary
problem {

U0
′′ + f(U0) = 0

U0(−∞) = α∗ U0(0) = a U0(+∞) = β∗ .
(4.11)

This solution represents the first approximation of the profile of a transition layer
around the interface observed in the stretched coordinates; it naturally arises when
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performing a formal asymptotic expansion of the solution (see [1] and the refer-
ences therein). Note that the “balanced stability assumption”, namely the integral
condition (1.2), guarantees the existence of a solution of (4.11). In the simple case

where f(u) = u(1 − u2), we know that U0(z) = tanh(z/
√

2). In the general case,
the following standard estimates hold.

Lemma 4.4. There are positive constants C and λ such that

0 < β∗ − U0(z) ≤ Ce−λ|z| for z ≥ 0 ,
0 < U0(z)− α∗ ≤ Ce−λ|z| for z ≤ 0 .

In addition, U0 is a strictly increasing function and, for j = 1, 2,

|DjU0(z)| ≤ Ce−λ|z| for z ∈ R . (4.12)

4.2. Construction of super-solutions

We look for super-solutions w+
ε for Problem (P ε) in the form

w+
ε (x, t) = U0

(
η(d(x, t)) + εp(t)

ε

)
+ q(t) , (4.13)

for all (x, t) ∈ RN × [0,∞), where

p(t) = −e−βt/ε
2

+ eLt +K , q(t) = σ
(
βe−βt/ε

2

+ ε2LeLt
)
, (4.14)

and where d is the signed distance function to an arbitrary generalized MMC
{γt}t≥0. Note that by η(d(x, t)) we understand the extension (4.8).

Let us first specify the choice of β and σ and give a useful inequality. Note
that these choices are reminiscent of the ones in [1] where the convergence to a
classical solution of the MMC is studied. By assumption (1.1), there are positive
constants b, m such that

f ′(U0(z)) ≤ −m if U0(z) ∈ [α∗, α∗ + b] ∪ [β∗ − b, β∗] . (4.15)

On the other hand, since the region {z ∈ R : U0(z) ∈ [α∗ + b, β∗ − b] } is compact
and since U0

′ > 0 on R, there is a constant δ1 > 0 such that

U0
′(z) ≥ δ1 if U0(z) ∈ [α∗ + b, β∗ − b] . (4.16)

We set

β :=
m

4
and σ :=

ζ

2β
.

By reducing ζ > 0 if necessary, we can assume σ ≤ min (σ0, σ1, σ2), where

σ0 :=
δ1

m+ F1
σ1 :=

1

β + 1
σ2 :=

4β

F2(β + 1)

F1 := ‖f ′‖L∞(α∗,β∗) F2 := ‖f ′′‖L∞(α∗−1,β∗+1) .

Combining (4.15) and (4.16), and considering that σ ≤ σ0, we obtain

U0
′(z)− σf ′(U0(z)) ≥ σm for −∞ < z <∞ . (4.17)
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Proof of Proposition 4.1 (i). For ease of notation we here denote w+
ε by w. Let

K > 1 be arbitrary. What we shall prove is that, for all ε ∈ (0, ε0), the inequality

Lw := wt −∆w − 1

ε2
f(w) ≥ 0 in RN × (0, T ] (4.18)

holds in the viscosity sense, provided that the constants ε0 > 0 and L > 0 are
appropriately chosen. Note that the remaining freedom for the choice of K > 1 is
crucial for the proof of Proposition 4.1 (iii).

We recall that α∗ < U0 < β∗ and go on under the following assumption

ε20Le
LT ≤ 1 . (4.19)

Then, given any ε ∈ (0, ε0), since σ ≤ σ1, we have 0 ≤ q(t) ≤ 1, so that

α∗ ≤ w(x, t) ≤ β∗ + 1 . (4.20)

In order to prove (4.18), choose φ ∈ C∞(RN × (0,∞)) such that

w − φ has a minimum at (x0, t0) ∈ RN × (0, T ] . (4.21)

Subtracting if necessary a constant from φ we can assume that

w − φ = 0 at point (x0, t0) . (4.22)

What we have to prove is

Lφ = φt −∆φ− 1

ε2
f(φ) ≥ 0 at point (x0, t0) , (4.23)

for all ε ∈ (0, ε0), with ε0 small enough, L large enough, both independent on φ.

In view of (4.22), we have φ(x0, t0)−q(t0) = U0

(
η(d(x0,t0))+εp(t0)

ε

)
∈ (α∗, β∗), and

one can define a smooth function ψ in a neighborhood of (x0, t0) by

ψ(x, t) := εU0
−1(φ(x, t)− q(t)) , (4.24)

so that (4.21), (4.22) transfer to

η(d)− (ψ − εp) has a zero minimum at (x0, t0) . (4.25)

It follows from Lemma 4.3 applied to test functions ψ − εp that

ψt −∆ψ ≥ εpt −
C

θ(ε)
at point (x0, t0) , (4.26)

ψt −∆ψ ≥ εpt at point (x0, t0) if d(x0, t0) >
1

2
θ(ε) holds . (4.27)

Using φ = U0(ψε )+q, we have the expansion f(φ) = f(U0(ψε ))+qf ′(U0(ψε ))+
1
2q

2f ′′(θ) for some U0 < θ < U0 + q. In view of the ordinary differential equation
(4.11), some straightforward computations yield, at point (x0, t0),

Lφ = E1 + E2 + E3 ,
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with

E1 = − 1

ε2
q

(
f ′(U0) +

1

2
qf ′′(θ)

)
+ U0

′pt + qt ,

E2 =
U0
′′

ε2
(1− |∇ψ|2) and E3 =

U0
′

ε
(ψt −∆ψ − εpt) .

The term E1. Plugging the expressions (4.14) for p and q in E1, we obtain

E1 =
β

ε2
e−βt/ε

2

(I − σβ) + LeLt(I + ε2σL) ,

with

I := U0
′ − σf ′(U0)− σ2

2
f ′′(θ)(βe−βt/ε

2

+ ε2LeLt) ≥ σm− σ2

2
F2(β + ε2LeLT ) ,

where we have used (4.17) and (4.20). Combining this, (4.19) and the inequality
σ ≤ σ2, we obtain I ≥ 2σβ. Consequently, we have

E1 ≥
σβ2

ε2
e−βt/ε

2

+ 2σβLeLt .

The term E2. First, assume d(x0, t0) > 1
2θ(ε). From the definition of η, we have

η(d) = d − θ(ε) in a neighborhood of (x0, t0). Arguing as in the proof of [14,
Theorem 2.2], we see that |∇ψ(x0, t0)| = 1 so that E2 = 0.

Now assume d(x0, t0) ≤ 1
2θ(ε), which implies η(d(x0, t0)) ≤ − 1

2θ(ε). In view
of statement (4.25) and the definition of η, we have |∇ψ| ≤ C at point (x0, t0).
We deduce from Lemma 4.4 that

|E2| ≤
C

ε2
e−λ|η(d)+εp|/ε ≤ C

ε2
e−λ(

1
2 θ(ε)−εp)/ε .

We remark that 0 < K − 1 ≤ p ≤ eLT +K. Consequently, if we assume

eLT +K ≤ θ(ε)

4ε
, (4.28)

then

|E2| ≤
C

ε2
e−λ

θ(ε)
4ε .

The term E3. If d(x0, t0) > 1
2θ(ε) it directly follows from (4.27) that E3 ≥ 0.

Now assume d(x0, t0) ≤ 1
2θ(ε), which implies η(d)(x0, t0) ≤ − 1

2θ(ε). It follows
from (4.26) that

E3 ≥ −
C

θ(ε)

U0
′

ε
.

Using again Lemma 4.4 and arguing as above for the term E2, we see that

E3 ≥ −
C

θ(ε)

1

ε
e−λ

θ(ε)
4ε .

Assumptions on θ(ε). We now specify a possible choice for θ(ε). Assume that, as
ε→ 0,

θ(ε)| ln ε| ≤ C and
1

ε2
e−λ

θ(ε)
4ε ≤ C , (4.29)
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for some constant C > 0; we remark that the latter assumption implies that
θ(ε)
ε → ∞ and that 1

θ(ε)
1
εe
−λ θ(ε)4ε is also bounded (so that E3 is bounded from

below). In the following we select

θ(ε) =
8

λ
ε| ln ε| , (4.30)

so that (4.29) holds. As easily understood, the above possible choice is related
to our improved estimate of the convergence rate of the Allen-Cahn equation to
generalized MMC (see Section 2).
Completion of the proof. Collecting all these estimates gives

Lφ ≥ σβ2

ε2
e−βt/ε

2

+ 2σβLeLt − C ≥ 2σβL− C .

Now we set L := 1
T ln θ(ε0)

8ε0
. If ε0 is chosen small enough, the assumptions on θ(ε)

combined with the above choice for L validate assumptions (4.19) and (4.28) and
insure Lφ ≥ 0. The proof of Proposition 4.1 (i) is now complete. �

Proof of Proposition 4.1 (ii) and (iii). For ease of notation we denote w+
ε by w.

In view of σβ = ζ/2 and (4.19), we have, for ε > 0 small enough, q(t) ≤ ζ
for all t ≥ 0. Hence w(x, t) ≤ β∗ + ζ holds true for all x ∈ RN . Next, choose
x ∈ RN such that x /∈ ωt, that is d(x, t) ≤ 0. In view of the graph of η we then
have η(d(x, t)) = −θ(ε) = − 8

λε| ln ε|. Therefore, for t ≥ 0, we have

w(x, t) = U0

(
− 8
λ | ln ε|+ p(t)

)
+ q(t)

≤ U0

(
− 8
λ | ln ε|+ eLT +K

)
+ σ(β + ε2LeLT ) .

Then it follows from σβ = ζ/2 and from U0(−∞) = α∗ that, for ε > 0 small
enough (not depending on x /∈ ωt), the inequality w(x, t) ≤ α∗+ ζ holds true. The
proof of Proposition 4.1 (ii) is now complete.

We now prove (iii). Since

w+
ε (x, 0) = U0

(
η(d(x, 0))

ε
+K

)
+
ζ

2
+ σε2L , (4.31)

it is immediate that w+
ε (x, 0) ≥ α∗+ ζ/3 for all x ∈ RN . Last, choose K > 1 large

enough so that U0(K) ≥ β∗ − ζ
6 . If x is such that d(x, 0) ≥ 8

λε| ln ε| = θ(ε), the

graph of η shows that η(d(x, 0)) ≥ 0 so that w+
ε (x, 0) ≥ U0(K) + ζ

2 ≥ β∗ + ζ
3 .

Proposition 4.1 (iii) is proved. �

Remark 4.5. Our super-solutions w+
ε actually prove more than (4.1). w+

ε (x, t) ≤
α∗ + ζ is valid not only for d(x, t) ≤ 0, but also for d(x, t) ≤ 8

λε| ln ε| − Cε, with
C > 0 large enough (because, in this case, η(d(x, t)) ≤ −Cε). See Figure 7. �

4.3. Proof of Theorem 2.1

Let (ω+
ε,0)ε>0 be any family of open sets satisfying (2.3), with

C0 >
8

λ
, (4.32)
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Γ0 (i.e. d0 = 0)

H−

d0M1ε−M1ε

β∗

α∗

x 7→ uε(x, f ′(a)−1ε| ln ε|)

H+

Figure 6. Prepared initial condition.

where λ > 0 is the constant that appears in Lemma 4.4. Fix ζ ∈ (0,min(a −
α∗, β∗ − a)) arbitrarily. The strategy is the following. By quoting a generation of
interface result from [1] and then using the super-solutions w+

ε associated with the
pair (γ+ε,0, ω

+
ε,0) := (∂ω+

ε,0, ω
+
ε,0) (see Proposition 4.1), we will show that{

uε(x, t) ≤ β∗ + ζ for all x ∈ RN

uε(x, t) ≤ α∗ + ζ for all x /∈ ω+
ε,t ,

(4.33)

for all t ≥ tε, with tε the generation time that appears in (2.1). Since sub-solutions
w−ε can be used in an analogous way, this will be enough to prove the theorem.

The rapid formation of internal layers that takes place in a neighborhood
of Γ0 = {x ∈ RN : u0(x) = a} is studied in [1]: from an arbitrary initial
data u0 ∈ C2

b (RN ) satisfying (1.3), an interface is fully developed at time tε :=
f ′(a)−1ε2| ln ε|. In particular, there is M1 > 0 such that, for ε > 0 small enough,

H−(x) ≤ uε(x, tε) ≤ H+(x) , (4.34)

for all x ∈ RN , where the functions H+(x), H−(x) are given by

H+(x) =

{
β∗ + ζ

3 if d0(x) > −M1ε

α∗ + ζ
3 if d0(x) ≤ −M1ε

H−(x) =

{
β∗ − ζ

3 if d0(x) ≥ M1ε

α∗ − ζ
3 if d0(x) < M1ε ,

with d0(x) := d(x, 0) the signed distance function to Γ0 (see Figure 6).
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dε > 0 d < 0d > 0

dε(·, t) = θ(ε)− Cε

Ωt

ω+
ε,t

dε < 0

Figure 7. Ωt, ω
+
ε,t and related signed distances.

For T > 0, we denote by w+
ε the super-solution associated with the pair

(γ+ε,0, ω
+
ε,0) in the sense of Proposition 4.1. We denote by dε the signed distance

function associated with {γ+ε,t}t≥0, the generalized MMC starting from γ+ε,0 :=

∂ω+
ε,0 (see Figure 7).

We claim that, for ε > 0 small enough,

H+(x) ≤ w+
ε (x, 0) , (4.35)

for all x ∈ RN . In the range where d0(x) ≤ −M1ε this follows from (4.2). Now
assume d0(x) > −M1ε. Since the constant C0 which appears in (2.3) is such that
C0 >

8
λ , we see that dε(x, 0) ≥ θ(ε) = 8

λε| ln ε|, for ε > 0 small enough. Therefore,
(4.2) implies (4.35).

From (4.35) and the comparison principle, we have

uε(x, t+ tε) ≤ w+
ε (x, t) for 0 ≤ t ≤ T − tε . (4.36)

From this and (4.1) (with ω+
ε,t playing the role of ωt) we immediately infer that,

for all T > 0, (4.33) is true on the time interval [tε, T ]. If we choose T > 0 large
enough so that ω+

ε,t = ∅ for all t ≥ T (that is the generalized MMC starting from

γ+ε,0 have become extinct), we see that uε(x, T ) ≤ α∗ + ζ for all x ∈ RN ; the
comparison principle then shows that this inequality persists for all t ≥ T and
thus that (4.33) remains true on the time interval [tε,∞). �

5. Proof of Theorem 2.5

In this section, we prove Theorem 2.5. Assume Ω0 is admissible in the sense of
Definition 2.3. Fix ζ > 0 arbitrarily small. After making two key observations in
subsection 5.1, we split the proof into the lower bounds and the upper bounds
appearing in Theorem 2.5.

5.1. Two key observations

A first observation is that the mean curvature evolution partial differential equa-
tion is invariant under time-shifts, dilations, rotations. More precisely if v(x, t)
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solves

vt = |Dv|div

(
Dv

|Dv|

)
, (5.1)

so do v(x, t+ s) with s ≥ 0, v(λx, λ2t) with λ > 0 and v(Rx, t) with R ∈ SOn(R).

Next, for ν ≥ 0, define the invertible map Πν : RN × R→ RN × R by

Πν((x, t)) :=
(
eνZe−a1νx, e−2a1ν(t− a2ν)

)
. (5.2)

For a given compact set K ⊂ RN ×R it is obvious that there is CK > 0 such that,
for all ν ≥ 0,

sup
K
‖(Πν − Id)‖ ≤ CKν and sup

K
‖(Πν

−1 − Id)‖ ≤ CKν . (5.3)

5.2. The lower bounds

For ε ≥ 0 small enough, we construct “inner approximations of Γ0” by

γ−ε,0 := ψε| ln ε|(Γ0) = eε| ln ε|Z
[
e−a1ε| ln ε|Φa2ε| ln ε|(Γ0)

]
, (5.4)

see Remark 2.4. Here we remark that

γ−ε,0 = P
(
Πε| ln ε|(Γ0)

)
,

where P : (x, t) 7→ x is the projection from RN+1 onto RN . We then define ω−ε,0 as

the domain enclosed by γ−ε,0. From Remark 2.4, we deduce that

0 ≤ ε < ε′ =⇒ γ−ε′,0 << γ−ε,0 , (5.5)

dist(γ−ε,0 , Γ0) ≥ Ĉ0ε| ln ε| , (5.6)

for some constant Ĉ0 > 0. By replacing if necessary ψε| ln ε|(Γ0) in (5.4) by ψCε| ln ε|

with C >> 1, we can assume Ĉ0 >
8
λ , so that (2.2) is satisfied with C0 = Ĉ0.

Therefore the lower bounds in Theorem 2.1 hold.

Next, it follows from (5.5) and the comparison principle (3.6) that (ω−ε ∪γ−ε ) ⊂
Ω. Since (see proof below)

dHRN+1
(γ−ε ,Γ) ≤ Cε| ln ε| , (5.7)

for some C > 0, it follows that

Ω \ NCε| ln ε|(Γ) ⊂ (ω−ε ∪ γ−ε ) , (5.8)

so that the lower bounds in Theorem 2.5 follow from the ones in Theorem 2.1.
More precisely, if (x, t) ∈ Ω \ NCε| ln ε|(Γ), we deduce from (5.8) and the lower
bounds in Theorem 2.1 that uε(x, t) ≥ β∗ − ζ.

It remains to prove (5.7). We use the observations made in subsection 5.1.
The function

v−ε (x, t) := v
(
Πε| ln ε|

−1(x, t)
)

(5.9)
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Γ0 γ−ε,0Γτε

x ∈ RN

t ∈ R

Γ

γ+
ε := Πε| ln ε|

−1(Γ)

t = τ ε

γ+
ε,τε

γ−ε = Πε| ln ε|(Γ) ∩ (RN ∩ [0,∞))

Figure 8. Sets used in the proof of Theorem 2.5.

solves (5.1), and v−ε (x, 0) = 0 if and only if x ∈ γ−ε,0. Hence v−ε “describes” the

generalized MMC {γ−ε,t}t≥0 starting from γ−ε,0. Therefore the “space-time interface”

γ−ε is given by

γ−ε = {(x, t) ∈ RN × [0,∞) : v−ε (x, t) = 0} .
In view of (5.9) this yields (see Figure 8)

γ−ε = Πε| ln ε|(Γ) ∩ (RN × [0,∞)) . (5.10)

Therefore (5.7) follows from (5.10) and (5.3).

5.3. The upper bounds

Since the evolution operator Φt : Γ0 7→ Γt is not invertible, the argument for the
upper bounds is more involved.

First, choose ε > 0 small enough so that the MMC starting from Γ0 re-
mains smooth on the time interval [0, τε], where τε := a2ε| ln ε|. From the classical
framework analysis [1, Theorem 1.3], there is M > 0 such that, for all tε ≤ t ≤ τε,

uε(x, t) ∈


[α∗ − ζ

3 , α
∗ + ζ

3 ] if d(x, t) ≤ −Mε

[α∗ − ζ
3 , β
∗ + ζ

3 ] if −Mε < d(x, t) < Mε

[β∗ − ζ
3 , β
∗ + ζ

3 ] if d(x, t) ≥Mε ,

(5.11)

with d(x, t) the signed distance function to Γt defined in (3.8). We recall that
tε := f ′(a)−1ε2| ln ε| denotes the generation time.
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Next, using the map Πε| ln ε|
−1, we define the space-time sets (see Figure 8)

γ+ε := Πε| ln ε|
−1(Γ) and ω+

ε := Πε| ln ε|
−1(Ω). From (5.3) we deduce that there is

C > 0 such that

dHRN+1
(γ+ε ,Γ) ≤ Cε| ln ε| . (5.12)

Since the function

v+ε (x, t) := v
(
Πε| ln ε|(x, t)

)
(5.13)

solves (5.1) for t ≥ τε, and v+ε (x, τε) = 0 if and only if x ∈ e−ε| ln ε|Zea1ε| ln ε|Γ0,
the set γ+ε is actually the “space-time interface” associated with the generalized
MMC {γ+ε,t}t≥τε starting from

γ+ε,τε := e−ε| ln ε|Zea1ε| ln ε|Γ0 . (5.14)

Hence Proposition 4.1 provides an Allen-Cahn super-solution w+
ε on (τε, T ] such

that, for all t ≥ τε,

w+
ε (x, t) ≤ α∗ + ζ for all x /∈ ω+

ε,t , (5.15)

with ω+
ε,t the “inside at time t” associated with γ+ε,t, and{
α∗ + ζ

3 ≤ w
+
ε (x, τε) for all x ∈ RN

β∗ + ζ
3 ≤ w

+
ε (x, τε) for all x such that dε(x, τε) ≥ 8

λε| ln ε| ,
(5.16)

with dε(x, t) the signed distance function to γ+ε,t.

From (5.4) and (5.14) we have eε| ln ε|Ze−a1ε| ln ε|Γτε = γ−ε,0 and γ+ε,τε =

[eε| ln ε|Ze−a1ε| ln ε|]−1Γ0, and thus

dist(Γτε , γ
+
ε,τε) ≥ cε dist(γ−ε,0 , Γ0) ,

where cε → 1, as ε → 0. In view of (5.6) it follows that, for ε > 0 small enough,

dist(Γτε , γ
+
ε,τε) ≥ C̃0ε| ln ε|, with C̃0 >

8
λ . It follows that, for ε > 0 small enough,

d(x, τε) ≥ −Mε =⇒ dε(x, τε) ≥ 8

λ
ε| ln ε| .

Combining this with (5.11) and (5.16), we infer that uε(x, τε) ≤ w+
ε (x, τε) for all

x ∈ RN . The comparison principle now implies

uε(x, τε + t) ≤ w+
ε (x, τε + t) , (5.17)

for all x ∈ RN , all t ∈ [0, T − τε].
Finally, for C > 0 as in (5.12), we take

(x, t) ∈ (Ω ∪ Γ)c \ NCε| ln ε|(Γ) , (5.18)

with t ≥ tε, and prove that uε(x, t) ≤ α∗+ ζ. If t ≥ τε, we deduce from (5.18) and
(5.12) that x /∈ ω+

ε,t so that conclusion follows from (5.15). If tε ≤ t ≤ τε, (5.18)
shows that d(x, t) ≤ −Cε| ln ε| ≤ −Mε and the conclusion follows from (5.11).
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Appendix A. On the generic regularity of generalized MMC

Let Ω0 be a domain (=a bounded open set) in RN , whose boundary Γ0 := ∂Ω0

is a smooth hypersurface without boundary. Let {Γt}t≥0 be the generalized MMC
starting from Γ0, and let Ωt denote the “inside at time t” as defined in (3.4). We
denote by Γ the “space-time interface” and by Ω the “space-time inside”. Let us
recall some classical definitions in the “generalized MMC literature” (see [7] for
instance). We say that the motion is regular from inside if ClRN+1 [Ω] = Ω ∪ Γ,
and regular if

ClRN+1 [Ω] = Ω ∪ Γ and ClRN+1 [(Ω ∪ Γ)c] = (Ω ∪ Γ)c ∪ Γ . (A.1)

It is clear that regularity (or regularity from inside) implies non fattening.
In this Appendix we state a result on the regularity, Proposition A.2, which

does not seem to exist in the literature. We state without proof the following
lemma which is well-known in general topology.

Lemma A.1. Assume S ⊂ (0,∞) is an uncountable set. Then

∃a > 0 ,∀b > a , S ∩ [a, b) is uncountable . (A.2)

Proposition A.2 (Generic regularity). Let (ων,0)ν>0 be a family of domains such
that γν,0 := ∂ων,0 is a hypersurface without boundary. Assume that

0 < ν < ν′ =⇒ ClRN [ων′,0] ⊂ ων,0 . (A.3)

For ν > 0, let {γν,t}t≥0 be the generalized MMC starting from γν,0, γν and ων the
associated “space-time interface” and “space-time inside”. Then the sets

J− := {ν > 0 : ClRN+1 [ων ] 6= ων ∪ γν}

J + := {ν > 0 : ClRN+1 [(ων ∪ γν)c] 6= (ων ∪ γν)c ∪ γν}
are at most countable.

Proof. We only prove the assertion for J−. First note that it follows from assump-
tion (A.3) and the comparison principle (3.6) that

0 < ν < ν′ =⇒ (ων′ ∪ γν′) ⊂ ων . (A.4)

For ν > 0, define δν := sup(y,τ)∈γν dist ((y, τ),ClRN+1 [ων ]). Let us observe

that ClRN+1 [ων ] ⊂ (ων ∪ γν) and thus J− = {ν > 0 : δν > 0}. Assume by
contradiction that J− is uncountable. Then there is an integer n0 such that the
set J−0 := {ν > 0 : δν ≥ 1

n0
} is uncountable. From Lemma A.1, there is ν∗ > 0

such that, for all ν > ν∗, the set J−0 ∩ [ν∗, ν) is uncountable. Therefore we can
construct a decreasing sequence (νn) of elements of J−0 which tends to ν∗. From
the definition of J−0 , we deduce the existence of (xn, tn) ∈ γνn such that

dist ((xn, tn),ClRN+1 [ωνn ]) ≥ 1

n0
. (A.5)

On the one hand, if j < k, the decreasing of the sequence (νn) and (A.4) imply
that (xj , tj) ∈ ωνk . Therefore (A.5) yields d ((xk, tk), (xj , tj)) ≥ 1

n0
. But, on the
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other hand, (A.4) implies that (xn, tn) ∈ ων∗ so that we can extract a convergent
subsequence of (xn, tn). This is a contradiction. �

It is known that, for an admissible initial domain Ω0, the evolution {Γt}t≥0
starting from Γ0 = ∂Ω0 is regular from inside [16, Corollary 4.5.11]. Proposition
A.2 provides a simple proof of the regularity both from inside and from outside.

Corollary A.3. Let Ω0 be an admissible domain in the sense of Definition 2.3.
Then the generalized MMC starting from Γ0 := ∂Ω0 is regular.

Proof. For 0 ≤ ν ≤ ν0, define, as in Remark 2.4,

γν,0 := ψν(Γ0) = eνZ
[
e−a1νΦa2ν(Γ0)

]
,

and denote by ων,0 the domain enclosed by γν,0. It is clear from (2.9) that the family
of domains (ων,0)0<ν<ν0 satisfies assumption (A.3) of Proposition A.2. Therefore,
for almost all ν ∈ (0, ν0), the generalized MMC {γν,t}t≥0 starting from γν,0 is
regular, that is,

ClRN+1 [ων ] = ων ∪ γν and ClRN+1 [(ων ∪ γν)c] = (ων ∪ γν)c ∪ γν . (A.6)

Since ων = Πν(Ω) ∩ (RN × [0,∞)) = Πν

(
Ω ∩ (RN × [a2ν,∞))

)
, with Πν as in

(5.2), we have Ω∩ (RN × [a2ν,∞)) = Πν
−1(ων). Since Πν is a homeomorphism on

RN+1, we see from (A.6) that, for almost all ν ∈ (0, ν0),

ClRN+1 [Ω ∩ (RN × [a2ν,∞))] = (Ω ∪ Γ) ∩ (RN × [a2ν,∞)) .

Letting ν → 0, we obtain

(Ω ∪ Γ) ∩ (RN × (0,∞)) ⊂ ClRN+1 [Ω ∩ (RN × (0,∞))] .

Combining this and ClRN [Ω0] = Ω0∪Γ0, we obtain ClRN+1 [Ω] = Ω∪Γ. Similarly,
we obtain ClRN+1 [(Ω ∪ Γ)c] = (Ω ∪ Γ)c ∪ Γ. �
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