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Abstract

Several mathematical models are proposed to understand spatial patchy vegetation
patterns arising in drylands. In this paper, we consider the system with nonlocal dispersal
of plants (through a redistribution kernel for seeds) proposed by Pueyo et al. in [27] as
a model for vegetation in water-limited ecosystems. It consists in two reaction diffusion
equations for surface water and soil water, combined with an integro-differential equation
for plants. For this system, under suitable assumptions, we prove well-posedness using the
Schauder fixed point theorem. In addition, we consider the stationary problem from the
viewpoint of vegetated pattern formation, and show a transition of vegetation patterns
when parameter values (rainfall, seed dispersal range, seed germination rate) in the system
vary. The influence of the shape of the redistribution kernel is also discussed.

1 Introduction

In drylands, vegetation patterns with patchiness such as stripes, spots, labyrinths and gaps
are observed [2], [4], [6], [14], [28], [30], [37]. The distance between stripes/spots of the
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vegetation patterns is wide-ranging from tens of centimeters to hundreds of meters, depending
on plant species. Moreover, it is also reported that vegetation patterns observed in fields are
independent of soil type and specific plant species. Figure 1 shows typical vegetation patterns
in water-limited ecosystems. It is said that the patchiness of vegetation in water-limited

a b c

Figure 1: Vegetation patterns of the perennial grass Paspalum varinatum in Israel (200mm
mean annual rainfall). (a) spots. (b) stripes. (c) gap. The distance between spots/stripes is
of the order of 15 cm. Reproduced with permission from [10].

ecosystems is formed in a self-organized way [21], [30], [31], [37] and an important signal
to catastrophic shifts for desertification [30], [32]. In order to understand such self-organized
vegetation pattern formation, a theoretical approach is required, see [2], [19], [20] for instance.
For a few decades, a lot of mathematical models to describe the vegetation pattern formation
in drylands have been developed. Klausmeier [16] focused on two important factors, plant
density and water concentration, to describe stripe vegetation patterns formed on slopes and
proposed a two component reaction-diffusion-advection system. We refer to [33], [34] and the
references therein for studies using Klausmeier model. Based on the Klausmeier model, a lot
of improvements have been performed. The authors in [11], [26] focus on three factors, plant
density, surface water and soil water. The proposed models are reaction-diffusion systems,
which include only local effects. Also, the authors in [7], [8] proposed a three-component model
of plant density, surface water and soil water, which includes a nonlocal effect described as
water uptake by laterally extended roots. Moreover, the existence of solutions for the system
proposed in [7], [8] was proved in [9]. Many researchers suggest that the vegetation patterns
in water-limited ecosystems are generated as a result of the diffusion-induced instability (the
Turing instability) [11], [13], [21], [26], [29], [31]. In particular, the work [15] discuss the
diversity of vegetation patterns in drylands through interplay between Turing mechanisms.

On the other hand, each plant establishes seed dispersal that contributes to the spreading.
In describing seed dispersal, nonlocal terms are more applicable for population dynamics of
seed dispersed plants than the diffusion term [1], [36]. In this context, Pueyo et al. [27]
proposed a new mathematical model with three components, plant density and amounts of
soil water and surface water. A feature of this model is to contain a nonlocal term for the
“plant spreading”. It reads

∂P

∂t
= cP gPmax

W

W + k1
P − (dP + f)P + rc

W

W + k1
gS

∫
Ω
fP (t, y)Φ(x, y)dy,

∂W

∂t
= αU

P + k2wU
P + k2

− gPmax
W

W + k1
P − rWW + dW∆W,

∂U

∂t
= rrain − αU

P + k2wU
P + k2

+ dU∆U,

(1)
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where P (t, x), W (t, x) and U(t, x) (t > 0, x ∈ Ω) respectively represent plant density, soil
water and surface water at time t and position x. Here, Ω is a connected bounded open set
of RN , with smooth boundary ∂Ω. All the parameter values are positive constants. The
equation for the plant density P consists of plant growth and loss, and establishment after
germination of seeds. The plant growth depends on amount of soil water W (t, x), described
as Michaelis-Mentan kinetics and the plant loss is at a constant rate. The integral term∫

Ω fP (t, y)Φ(x, y)dy in the third term of the right hand side in the equation for P means seed
density at time t and position x, that is seeds are produced by the plant P at a constant rate
f . Here, the kernel Φ, which is often called redistribustion kernel, is a probability density
function, therefore, we assume that

∫
Ω Φ(x, y)dy = 1 for any x ∈ Ω. In other words, the

integral term describes the distribution of seeds produced by plants. We call this term seed
dispersal in this paper. In addition, the term rc

W
W+k1

gS in front of the integral term means
an establishment rate for seedlings, which also depends on soil water. Thus the third term
describes supply of biomass through germination of seeds. The second and third equations
describe the dynamics of water, where water is divided into two stages: soil water and surface
water. The constant rrain is rainfall and the term −αU P+k2wU

P+k2
represents an infiltration

rate from ground into subsurface, which depends on the plant density: plenty of biomass
facilitates the infiltration of water (wU < 1). The terms −gPmax W

W+k1
P and −rWW in the

equation for W mean the losses of soil water due to uptake by plants and due to drainage and
evaporation, respectively. Finally, the dispersal of soil water and surface water is described
by linear diffusion. Actually, surface water flow is not a linear diffusion process and can be
modeled by using shallow water theory [7], [18]. However, the results obtained with such a
nonlinear diffusion process are qualitatively similar to those obtained in the linear case. This
justifies the use of a linear diffusion process as surface water flow in (1).

In order to reduce the number of parameters, we use the following change of variables
(nondimensionalization):

P̃ (t̃, x̃) =
1

k2
P (t, x), W̃ (t̃, x̃) =

1

k1
W (t, x), Ũ(t̃, x̃) =

α

gPmaxk2
U(t, x),

Φ̃(x̃, ỹ) =

(
dUk1

gPmaxk2

)N/2
Φ(x, y),

t̃ =
gPmaxk2

k1
t, x̃ =

√
gPmaxk2

dUk1
x, ỹ =

√
gPmaxk2

dUk1
y,

Ω̃ =

{√
gPmaxk2

dUk1
z, z ∈ Ω

}
,

a =
cPk1

k2
, b =

(dP + f)k1

gPmaxk2
, c =

rcgSfk1

gPmaxk2
, d =

dW
dU

, e0 =
rWk1

gPmaxk2
,

r =
αrraink1

(gPmaxk2)2
, g =

αk1

gPmaxk2
.
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Then, (1) is recast into

∂P

∂t
= a

W

W + 1
P − bP + c

W

W + 1

∫
Ω
P (t, y)Φ(x, y)dy,

∂W

∂t
= d∆W + U

P + wU
P + 1

− W

W + 1
P − e0W,

∂U

∂t
= ∆U + r − gU P + wU

P + 1
,

t > 0, x ∈ Ω, (2)

where we have dropped the tildes.
In this paper, since we impose the Neumann boundary conditions for surface water and soil

water, the corresponding redistribution kernel is needed. Precisely, we assume the following.

Assumption 1.1 (Redistribution kernel) Kernel Φ : Ω × Ω → [0,Φmax] is continuous,
and satisfies

Φ(x, y) ≥ Φ0 > 0 when |x− y| ≤ δΦ, (3)

for some constants Φ0 > 0, δΦ > 0, and, for all x ∈ Ω,∫
Ω

Φ(x, y) dy = 1, (4)

together with
DyΦ(x, y) · ny = 0 for all y ∈ ∂Ω,

where ny is an outward unit normal vector to ∂Ω at point y.

For instance, in one space dimension (0, L), one can simply think of

k(x, y) :=
1

ξ
e−η(x−y)2 , (5)

and

Φ(x, y) =
∞∑

i=−∞
(k(x, y + 2iL) + k(x, 2iL− y)),

where the constant ξ is adjusted so that
∫ L

0 Φ(x, y)dy = 1 (see [12]). To perform numerics in
Section 4, we shall use the approximation

Φapprox(x, y) = k(x, y) + k(x,−y) + k(x, 2L− y).

Figure 2 shows a graph of the kernel Φapprox(x, y). The derivative conditions on the boundary
are approximately satisfied. From the seed dispersal point of view, the works [3], [22], [23],
[24] discuss suitable redistribution kernels. In subsection 4.3, we consider other kernels than
(5), allowing in particular bimodal shapes.

In [27], Pueyo et al. proposed the model (1), and they discussed the relation between
spatial patterns and biomass, and the effects of plant dispersal strategies, fecundity and es-
tablishment ability. In this paper, we discuss relations between spatial vegetation patterns
and four parameter in the system: the rainfall rate, the seed dispersal range, the seed germina-
tion rate and the kernel shape. On the basis of these discussions, we first argue the existence
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Figure 2: Graph of the kernel Φapprox(x, y) with k(x, y) = 1
ξ e
−η(x−y)2 . The horizontal axis

and the depth mean x and y, respectively. Here, we set ξ = 0.088587, η = 400 and L = 0.25.

and uniqueness of a solution to the system (2) under the Neumann boundary conditions and
suitable initial functions.

The paper is organized as follows. In Section 2, we prove the well-posedness of the nonlocal
system (2) by using the Schauder fixed point theorem and a comparison principle argument.
In Section 3 we identify, depending on the values of parameters, three regimes: hyper-arid and
arid ecosystems both leading to extinction of plants, in contrast with semi-arid ecosystems
possibly leading to patchy patterns. In Section 4, we perform computer-aided analysis to
shed light on bifurcations from constant to heterogeneous steady states, that are natural
candidates to describe patchiness. Besides, the influence of the variation of some parameter
values on two-dimensional vegetation patterns are numerically illustrated. Finally, we give
some concluding remarks in Section 5.

2 Well-posedness of the nonlocal system

In this section we prove, under suitable assumptions, the well-posedness of the nonlocal system
(2) equipped with the no flux boundary conditions for surface water and soil water.

For this analysis, let us use the small letters u, w, p, and then consider

∂tu−∆u = r − gH(p)u t > 0, x ∈ Ω,

∂tw − d∆w + e0w = H(p)u−K(w)p t > 0, x ∈ Ω,

∂tp+ bp = aK(w)p+M(w)c

∫
Ω

Φ(x, y)p(t, y) dy t > 0, x ∈ Ω,

(u(0, x), w(0, x), p(0, x)) = (u0(x), w0(x), p0(x)) x ∈ Ω,(
∂u
∂ν (t, x), ∂w∂ν (t, x)

)
= (0, 0) t > 0, x ∈ ∂Ω,

(6)

where r, g, d, e0, b, a and c are positive constants. To stick with (2) we could select H(p) =
p+wU
p+1 , K(w) = M(w) = w

w+1 , but we allow more profiles by only making the following
assumptions.
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Assumption 2.1 (Nonlinear functions) Functions H, K, M are increasing and locally
Lipschitz continuous on [0,∞) and satisfy, for some constants H+, K+, M+,

0 < H(0) ≤ H(p) ≤ H+ for all p ≥ 0, (7)

0 = K(0) < K(w) ≤ K+ for all w > 0, (8)

0 = M(0) < M(w) ≤M+ for all w > 0. (9)

As far as initial conditions are concerned, our assumptions are the following.

Assumption 2.2 (Initial conditions) The initial data (u0, w0, p0) are smooth, nonnega-

tive, p0 6≡ 0, and satisfy the expected compatibility conditions that is
(
∂u0
∂ν (x), ∂w0

∂ν (x)
)

= (0, 0),

for all x ∈ ∂Ω.

We start with some useful a priori estimates. In the sequel, for T > 0, we define QT :=
(0, T )× Ω.

Lemma 2.3 (A priori estimates) Let Assumptions 2.1, 2.2 and 1.1 hold. Then, for any
T > 0, there is a constant C > 0 such that any nonnegative solution (u,w, p) ∈ C(QT )3 of
the nonlocal system (6) satisfies

0 ≤ u(t, x), w(t, x), p(t, x) ≤ C for all (t, x) ∈ QT .

Proof. • Notice that the constants 0 and r
gH(0) are sub- and super-solutions for equation

∂tu−∆u = r − gH(p)u, therefore it follows from the parabolic maximum principle that

0 ≤ u(t, x) ≤ Cu := max

(
r

gH(0)
, ‖u0‖L∞(Ω)

)
, (10)

and u(t, x) > 0 as soon as t > 0, x ∈ Ω, thanks to the strong maximum principle.
• The above control on u then implies that the constants 0 and H+Cu/e0 are sub- and

super-solutions for equation ∂tw − d∆w + e0w = H(p)u−K(w)p, and therefore

0 ≤ w(t, x) ≤ Cw := max

(
H+Cu
e0

, ‖w0‖L∞(Ω)

)
, (11)

and w(t, x) > 0 as soon as t > 0, x ∈ Ω, thanks to the strong maximum principle.
• To prove the nonnegativity of p, we write

∂tp+ (b− aK(w(t, x)))p = θ(t, x) := M(w(t, x))c

∫
Ω

Φ(x, y)p(t, y) dy, (12)

which we regard as a first order ODE (with x playing the role of a parameter), so that we
have the implicit formula

p(t, x) = e−bt+a
∫ t
0 K(w(τ,x)) dτ

(
p0(x) +

∫ t

0
ebτ−a

∫ τ
0 K(w(h,x)) dhθ(τ, x) dτ

)
. (13)
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In particular, for any x ∈ Ω, the continuity of p(·, x), K(w(·, x)) and M(w(·, x)) on [0, T ]
enforces the partial application t 7→ p(t, x) to belong to C1([0, T ]). We claim that, for any
x ∈ Ω, we can define

tx := sup {t ∈ (0, T ] : 0 < τ < t =⇒ p(τ, x) > 0} ∈ (0, T ]. (14)

Indeed, if p(0, x) = p0(x) > 0 this is trivial. On the other hand, if p(0, x) = p0(x) = 0,
evaluating (12) at point (0, x) yields

∂tp(0, x) = M(w0(x))c

∫
Ω

Φ(x, y)p0(y) dy,

which is strictly positive — in view of p0 ≥ 0, p0 6≡ 0 and (3)— which also validates definition
(14). The function x 7→ tx being lower semi continuous on the compact Ω, we can define

T ∗ := min
x∈Ω

tx ∈ (0, T ].

Let us assume, by way of contradiction, that T ∗ < T . Then, for a x∗ such that T ∗ = tx∗ ,
we have p(T ∗, x∗) = 0 so that, by evaluating (13) at point (T ∗, x∗), we get that p0(x∗) = 0
and θ(τ, x∗) = M(w(τ, x∗))c

∫
Ω Φ(x∗, y)p(τ, y) dy = 0 for all 0 ≤ τ ≤ T ∗. In view of (9),

M(w(τ, x∗)) > 0 as soon as τ > 0 so that∫
Ω

Φ(x∗, y)p(τ, y) dy = 0 for all 0 < τ ≤ T ∗.

This, combined with assumption (3), enforces p(τ, y) = 0 for all (τ, y) in the cylinder [0, T ∗]×
B(x∗, δΦ). A next point x∗∗ is taken from inside of B(x∗, δΦ) \B(x∗, 1

2δΦ). By repeating the
above procedure, we arrive at p ≡ 0 in [0, T ∗] × B(x∗∗, δΦ). By repeating a finite number of
times this, we get p ≡ 0 on the compact region QT ∗ , which contradicts p0 6≡ 0. As a result,
T ∗ = T and the nonnegativity of p is proved. We have even proved that p(t, x) > 0 as soon
as t > 0, x ∈ Ω.
• It remains to bound p from above. The equation for p in (6) yields

∂tp(t, x) ≤ (aK+ − b)p(t, x) +M+c

∫
Ω

Φ(x, y)p(t, y) dy. (15)

Defining the total mass of plants P (t) :=
∫

Ω p(t, x) dx, integrating the above inequality over
x ∈ Ω, using Fubini-Tonelli theorem and (4) we obtain P ′(t) ≤ βP (t), where

β := aK+ − b+M+c =: δ +M+c. (16)

It therefore follows that P (t) ≤ P (0)eβt which we plug into (15) to get the differential in-
equality

∂tp(t, x) ≤ δp(t, x) +M+cΦmaxP (0)eβt, p(0, x) = p0(x). (17)

Since (p0(x)− ΦmaxP (0)) eδt + ΦmaxP (0)eβt is the solution of the equation associated natu-
rally with (17), we get by comparison that

p(t, x) ≤ (p0(x)− ΦmaxP (0)) eδt + ΦmaxP (0)eβt

≤ (‖p0‖L∞(Ω) + ΦmaxP (0))eβt

≤ (‖p0‖L∞(Ω) + ΦmaxP (0)) max(1, eβT ) =: Cp, (18)

which concludes the proof of the lemma. �

7



Remark 2.4 (Hyper-arid ecosytems) If the constant β = aK+ − b + M+c turns out to
be negative, then there is pmax > 0 such that, for all x ∈ Ω,

p(t, x) ≤ pmaxeβt → 0, as t→∞,

that is an exponentially fast extinction of plants.

We now prove the well-posedness of problem (6) by using the Schauder fixed point theorem.

Theorem 2.5 (Well-posedness of the nonlocal system) Let Assumptions 2.1, 2.2 and
1.1 hold. Then, for any T > 0, the nonlocal problem (6) has a unique nonnegative solution

(u,w, p) in C
1+α
2
,1+α(QT )× C

1+α
2
,1+α(QT )× (C(QT ) ∩ C1

t (QT )) for any 0 < α < 1.

Proof. Let T > 0 be given. Let us define a convex and closed subset of X := C(QT )3 by

A :=
{

(u,w, p) ∈ X : 0 ≤ u,w, p ≤ C, (u,w, p)(0, x) = (u0, w0, p0)(x), P (t) ≤ P (0)eβt
}
,

where C := max(Cu, Cw, Cp) (see (10), (11), (18) in proof of Lemma 2.3), P (t) :=
∫

Ω p(t, x) dx
and β is defined in (16). Let (u,w, p) ∈ A be given.
• We denote by ū the solution of the linear (observe that the initially given p is plugged

in the right hand side member) parabolic problem
∂tū−∆ū = r − gH(p)ū t > 0, x ∈ Ω,

ū(0, x) = u0(x) x ∈ Ω,
∂ū
∂ν (t, x) = 0 t > 0, x ∈ ∂Ω.

(19)

We have 0 ≤ ū ≤ Cu (see proof of Lemma 2.3) and it follows from standard parabolic estimates
(see e.g. [17]) that

‖ū‖
C

1+α
2 ,1+α(QT )

≤ Cu, (20)

where Cu does not depend on (u,w, p) ∈ A but only on C, T , |Ω|, r, g, H+.
•We also denote by w̄ the solution of the nonlinear parabolic problem (observe that the ū

obtain previously — and not the initially given u— is plugged in the right-hand side member
to insure that Cw remains a super-solution)

∂tw̄ − d∆w̄ + e0w̄ = H(p)ū−K(w̄)p t > 0, x ∈ Ω,

w̄(0, x) = w0(x) x ∈ Ω,
∂w̄
∂ν (t, x) = 0 t > 0, x ∈ ∂Ω.

(21)

Notice that the existence of w̄ is guaranteed (see [35, Chapter 14]) by the a priori estimate
0 ≤ w̄ ≤ Cw (see proof of Lemma 2.3). It follows from standard parabolic estimates that

‖w̄‖
C

1+α
2 ,1+α(QT )

≤ Cw, (22)

where Cw does not depend on (u,w, p) ∈ A but only on C, T , |Ω|, d, e0, H+, K+.
• Last we denote by p̄ the solution of the first order ODE, with x playing the role of a

parameter, (observe that the initially given p and the previously obtained w̄ — and not the
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initially given w— are plugged in the right hand side member; see below for an explanation
of this choice) ∂tp̄+ (b− aK(w̄(t, x)))p̄ = θ(t, x) := M(w̄(t, x))c

∫
Ω

Φ(x, y)p(t, y) dy

p̄(0, x) = p0(x),

(23)

that is

p̄(t, x) = e−bt+a
∫ t
0 K(w̄(τ,x)) dτ

(
p0(x) +

∫ t

0
ebτ−a

∫ τ
0 K(w̄(h,x)) dhθ(τ, x) dτ

)
. (24)

The nonnegativity of p implies that of p̄. Having inserted the control P (t) ≤ P (0)eβt in the
definition of the set A allows to recover p̄ ≤ Cp ≤ C. Indeed, the analogous of (15), that is

∂tp̄(t, x) ≤ (aK+ − b)p̄(t, x) +M+c

∫
Ω

Φ(x, y)p(t, y) dy, (25)

combined with P (t) ≤ P (0)eβt implies the analogous of (17) for p̄, which implies p̄ ≤ Cp as
in the proof of Lemma 2.3. On the other hand, we need to show that the control P̄ (t) :=∫

Ω p̄(t, x) dx ≤ P (0)eβt has not been lost. Integrating (25) over x ∈ Ω, using Fubini-Tonelli
theorem and (4) we obtain

P̄ ′(t) ≤ (aK+ − b)P̄ (t) +M+cP (t) ≤ (aK+ − b)P̄ (t) +M+cP (0)eβt. (26)

By the definition of β in (16), P (0)eβt solves the equation associated naturally with (26), so
that by comparison we get the desired estimate P̄ (t) ≤ P (0)eβt. We now prove that

{p̄ : (u,w, p) ∈ A} is relatively compact in C(QT ), (27)

using Arzéla-Ascoli theorem. The uniform boundedness is already known and the equiconti-
nuity follows from the following two facts. First, (23) provides a uniform (w.r.t. (u,w, p) ∈ A,
(t, x) ∈ QT ) bound for |∂tp̄(t, x)|, which settles the case of the time variable. Secondly, the
case of the space variable directly follows from the expression (24) and the uniform continu-
ity of M , K, Φ on compact sets, the uniform continuity of p0 on Ω and the uniform (w.r.t.
(u,w, p) ∈ A) bound (22) (notice that this is where we would have faced a problem if we had
plugged the initially given w, which is only continuous, rather than w̄ into (23)).
• Hence, we are equipped with the continuous operator

L : (u,w, p) ∈ A 7→ (ū, w̄, p̄) ∈ A,

with A a convex and closed subset of the Banach space X. Moreover it follows from estimates
(20), (22) and (27) that L(A) is relatively compact. Therefore, by the Schauder fixed point
theorem, the operator L has a fixed point, that is a solution of the nonlocal problem (6).
• Last, uniqueness follows from an adaptation of classical procedures for local system. If

(u1, w1, p1) and (u2, w2, p2) are two solutions then, in virtue of the a priori estimate Lemma
2.3, all components lie in the interval [0, C] on which the nonlinear functions H, K and M
are Lipschitz continuous. Subtract the equation for u2 from that for u1, multiply the result
by u := u1−u2 and then integrate over the domain Ω. Proceed similarly for other equations,
add the three estimates to collect

d

dt

∫
Ω

(u2 + w2 + p2)(t, x)dx ≤ Cst
∫

Ω
(u2 + w2 + p2)(t, x)dx,

9



where Cst is a positive constant. Then the Gronwall lemma yields u ≡ w ≡ p ≡ 0. We skip
the details but uniqueness actually also follows from the following stronger property, whose
proof is given. �

Proposition 2.6 (Comparison principle) Let (u∗, w∗, p∗) ≥ (0, 0, 0) and (u∗, w∗, p∗) ≥
(0, 0, 0) be such that

∂tu∗ −∆u∗ − r + gH(p∗)u∗

≤ ∂tu∗ −∆u∗ − r + gH(p∗)u
∗

∂tw∗ − d∆w∗ + e0w∗ −H(p∗)u∗ +K(w∗)p
∗

≤ ∂tw∗ − d∆w∗ + e0w
∗ −H(p∗)u∗ +K(w∗)p∗

∂tp∗ + bp∗ − aK(w∗)p∗ −M(w∗)c

∫
Ω

Φ(x, y)p∗(t, y) dy

≤ ∂tp∗ + bp∗ − aK(w∗)p∗ −M(w∗)c

∫
Ω

Φ(x, y)p∗(t, y) dy,

(28)

together with (u∗, w∗, p∗)(0, ·) ≤ (u∗, w∗, p∗)(0, ·) in Ω, and (∂u∗∂ν ,
∂w∗
∂ν ) ≤ (∂u

∗

∂ν ,
∂w∗

∂ν ) in (0, T )×
∂Ω. Then

(u∗, w∗, p∗) ≤ (u∗, w∗, p∗) in QT .

Proof. Define functions u := u∗−u∗, w := w∗−w∗, p := p∗− p∗. Denote by L > 0 an upper
bound for the Lipschitz constants of H, K and M on the interval [0, Cmax], in which u∗, w∗,
p∗, u

∗, w∗, p∗ take their values. Multiplying the first inequality of (28) by u+ := max(u, 0),
integrating over Qt = (0, t) × Ω, using u+(0, ·) ≡ 0, using

∫
Ω u

+∆u dx ≤ −
∫

Ω |∇u
+|2 dx

thanks to ∂u
∂ν (t, ·) ≤ 0 on ∂Ω, we get

1

2

∫
Ω

(u+)2(t, x) dx ≤
∫ t

0

∫
Ω
g(H(p∗)u

∗ −H(p∗)u∗)u
+ dxdτ.

We distinguish three different cases to estimate the integrand in the right hand side member
above: if u∗ ≤ u∗ it is zero; if u∗ > u∗ and p∗ ≥ p∗ it is non positive by the monotonicity
of H and the nonnegativity of u∗ and u∗; if u∗ > u∗ and p∗ < p∗ then it is controlled by
g(LCmaxp

+ +H+u+)u+, since in this case |p| = p+, and hence by C1((p+)2 + (u+)2). Here,
p+ is defined as p+ := max(p, 0). As a result we have∫

Ω
(u+)2(t, x) dx ≤ C1

∫ t

0

∫
Ω

((u+)2 + (p+)2)(τ, x) dxdτ. (29)

Similar arguments (multiply by w+ := max(w, 0), integrate, distinguish cases, use monotonic-
ity and positivity) for the second inequality of (28) lead to∫

Ω
(w+)2(t, x) dx ≤ C2

∫ t

0

∫
Ω

((w+)2 + (p+)2 + (u+)2)(τ, x) dxdτ, (30)

with C2 a constant depending on L, Cmax, H+ and K+. For the third inequality of (28), we
combine similar arguments with∫

Ω

∫
Ω

Φ(x, y)p(τ, y)p+(τ, x) dxdy ≤ Φmax

∫
Ω

∫
Ω
p+(τ, y)p+(τ, x) dxdy

≤ Φmax

(∫
Ω
p+(τ, x) dx

)2

≤ Φmax|Ω|
∫

Ω
(p+)2(τ, x) dx,

10



to derive ∫
Ω

(p+)2(t, x) dx ≤ C3

∫ t

0

∫
Ω

((p+)2 + (w+)2)(τ, x) dxdτ, (31)

with C3 a constant depending on L, Cmax, K+, M+, Φmax and |Ω|. Adding (29), (30) and
(31), and using the Gronwall lemma we get that∫

Ω
((u+)2 + (w+)2 + (p+)2)(t, x) dx = 0, for all 0 ≤ t ≤ T.

Hence, u+ = w+ = p+ ≡ 0 on QT , and the comparison principle is proved. �

3 Identification of various regimes

In this section, we formally identify various behaviors for problem (6) depending on the value
of the parameters. Recall that β was defined in (16). Here, aridity classes are introduced
according to the aridity index which is defined by the ratio of annual rainfall to potential
evapotranspiration rate [10]. The aridity is classified into four levels: hyper-arid where bare
soil is only stable, arid where bare soil or vegetation patterns are stable, semi-arid where
vegetation patterns are only stable and dry-subhumid where uniform vegetation or vegetation
patterns are stable.

Hyper-arid ecosystems: β < 0. As seen in Remark 2.4, β < 0 leads to an exponentially
fast extinction of plants. In the sequel we exclude this situation and assume β > 0.

Let us investigate the steady states of problem (6), namely nonnegative solutions of

−∆u = r − gH(p)u x ∈ Ω,

−d∆w + e0w = H(p)u−K(w)p x ∈ Ω,

bp = aK(w)p+M(w)c

∫
Ω

Φ(x, y)p(t, y) dy x ∈ Ω,

(∂u∂ν (x), ∂w∂ν (x)) = (0, 0) x ∈ ∂Ω.

(32)

When looking after solutions (u,w, p) with constant p, the third equation yields p ≡ 0 or
b = aK(w) +M(w)c. The former gives (u0 ≡ r

gH(0) , w0 ≡ r
ge0
, p0 ≡ 0). As far as the latter is

concerned, since β > 0 and since K and M are increasing,

∃!w1 > 0, aK(w1) +M(w1)c = b, (33)

which gives
(
u1 ≡ r

gH(p1) , w1, p1 ≡
r
g
−e0w1

K(w1)

)
, whose nonnegativity is to be discussed.

Arid ecosystems: β > 0, r
g < e0w1. In this context, (u0, w0, p0) is the only nonnegative

steady state with constant p. To study its linear stability, let us consider the associated eigen-
value problem (plug (u,w, p)(t, x) = (u0, w0, p0 ≡ 0) + εe−λ0t(ϕ,ψ, θ)(x) into the parabolic
problem and keep the ε terms)

−λ0ϕ−∆ϕ = −gH(0)ϕ− rH
′(0)

H(0) θ x ∈ Ω,

−λ0ψ − d∆ψ + e0ψ = H(0)ϕ+ r
g
H′(0)
H(0) θ −K( r

ge0
)θ x ∈ Ω,

−λ0θ + bθ = aK( r
ge0

)θ +M( r
ge0

)c

∫
Ω

Φ(x, y)θ(y) dy x ∈ Ω,

(∂ϕ∂ν (x), ∂ψ∂ν (x)) = (0, 0) x ∈ ∂Ω.

(34)
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Integrating the third equation over x ∈ Ω, using Fubini-Tonelli theorem and (4) gives

λ0 = b− aK(
r

ge0
)−M(

r

ge0
)c. (35)

Since r
ge0

< w1, we have λ0 > b − aK(w1) −M(w1)c = 0, so that (u0, w0, p0 ≡ 0) is linearly
stable. As far as the eigenfunction is concerned, notice that plugging (35) yields∫

Ω
Φ(x, y)(θ(y)− θ(x)) dy = 0, ∀x ∈ Ω.

Taking a point x where θ reaches its maximum and using (3), we see that θ is constant on a
small neighborhood of given size of x and then, by repeating, on the whole of Ω.

The above suggests that, in these arid ecosystems, we again have an exponentially fast
extinction of plants.

Semi-arid ecosystems: β > 0, r
g > e0w1. In this context, (u0, w0, p0) and (u1, w1, p1)

are the two nonnegative steady states with constant p. In this regime we have λ0 < 0 so
that (u0, w0, p0) is linearly unstable. We now investigate the linear stability of (u1, w1, p1) by
looking at the eigenvalue problem

−λ1ϕ−∆ϕ = −gH(p1)ϕ− rH
′(p1)

H(p1) θ x ∈ Ω,

−λ1ψ − d∆ψ + e0ψ = H(p1)ϕ+ r
g
H′(p1)
H(p1) θ −K(w1)θ − p1K

′(w1)ψ x ∈ Ω,

−λ1θ + bθ = aK(w1)θ + aK ′(w1)p1ψ

+M(w1)c

∫
Ω

Φ(x, y)θ(y) dy +M ′(w1)cp1ψ x ∈ Ω,

(∂ϕ∂ν (x), ∂ψ∂ν (x)) = (0, 0) x ∈ ∂Ω.

(36)

Integrating the third equation over x ∈ Ω, using Fubini-Tonelli theorem and (33) yields

−λ1

∫
Ω
θ = (aK ′(w1) +M ′(w1)c)p1

∫
Ω
ψ,

so that λ1 < 0 (since principal eigenfunctions are positive), so that p1 is linearly unstable.
The above suggests that, in these semi-arid ecosystems, there exists in between p0 ≡ 0 and

p1 > 0 a nonconstant steady state p∗(x) (possibly spots, stripes...). This will be numerically
investigated in subsection 4.2.

4 Steady states

In Section 2, we proved the existence and uniqueness of a global solution to problem (6).
Section 3 gave formal discussion on behaviors for problem (6) in some parameter regimes.
Then, our subsequent question arises as follows: what kind of solutions do the system (2)
exhibit from pattern formation point of view? Since we are interested in vegetation patterns
arising in the system, we treat the stationary problem for (2) in this section.

12



4.1 Constant steady states

We first consider constant equilibrium solutions in the following ODE system associated with
(2) (the mean field model):

dP

dt
= a

W

W + 1
P − bP + c

W

W + 1
P,

dW

dt
= U

P + wU
P + 1

− W

W + 1
P − e0W,

dU

dt
= r − gU P + wU

P + 1
.

(37)

Equilibrium points of (37) are computed as

(P0,W0, U0) := (0,
r

e0g
,
r

wUg
)

and

(P1,W1, U1) :=

((
r

g
− e0W1

)
W1 + 1

W1
,

b

a+ c− b
,
r(P1 + 1)

g(P1 + wU )

)
.

Since negative equilibria are ecologically meaningless, we focus on nonnegative ones. The
equilibrium point (P0,W0, U0) which indicates desert (bare) states always exists, on the other
hand, the existence of the other equilibrium point (P1,W1, U1) depends on the parameter
values, which means that the equilibrium point (P1,W1, U1) can be negative according to the
parameter setting. For example, when the value of r is small, the plant density P1 becomes
negative. If P1 > 0, then (P1,W1, U1) indicates vegetation states.

We are interested in the transition of vegetation states when the rainfall rate r varies,
because it is one of the important parameters to discuss the possibility of desertification
in (2). So, we set r as a bifurcation parameter. Figure 3 shows bifurcation diagrams of
equilibrium points for (37) when the rainfall r globally varies. One can see from Figure 3 that
(P0,W0, U0) = (0, r

e0g
, r
wUg

), which coincides with bare soil states, is stable for small r, but
when the value of r increases, it is destabilized at r = rc = 16.9106 and another branch which
corresponds to (P1,W1, U1) = (( rg − e0W1)W1+1

W1
, b
a+c−b ,

r(P1+1)
g(P1+wU )) appears as a consequence

of a transcritical bifurcation. The positive part of the branch in Figure 3 (a) corresponds to
a vegetated state and it grows linearly as the rainfall rate r increases.

Our original interest is the occurrence of spatial vegetation patterns when the spatial terms
are included in the model. Therefore, in the next subsection, we investigate the stability of
the positive equilibrium solution for (2) in one space dimension from the view point of the
linear stability analysis, and discuss a transition of spatial patterns, depending on a change
of a bifurcation parameter: r (rainfall), or η (seed dispersal range), or c (seed germination
rate).
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Figure 3: Structure of equilibrium points of (37). (a) Plant density P . (b) Soil water W .
(c) Surface water U . The horizontal and vertical axes mean the parameter r and the value
of the component, respectively. The solid and dashed curves in the figures mean respectively
stable and unstable branches. The mark � in the figures denotes a bifurcation point. The
parameter values are a = 10, b = 5.2, c = 0.12, e0 = 4, g = 4 and wU = 0.2.
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4.2 Global structure of stationary solutions

In this subsection, we consider the stationary problem in one space dimension

0 = a
W

W + 1
P − bP + c

W

W + 1

∫ L

0
P (y)Φapprox(x, y)dy,

0 = d∆W + U
P + wU
P + 1

− W

W + 1
P − e0W,

0 = ∆U + r − gU P + wU
P + 1

,

0 < x < L, (38)

under the Neumann boundary conditions Wx(0) = Wx(L) = Ux(0) = Ux(L) = 0. Here,
we use the redistribution kernel Φapprox(x, y) associated with (5) as shown in Figure 2. We
expect that heterogeneous vegetation patterns emerge as a consequence of bifurcation from
the equilibrium solution (P1,W1, U1) = (( rg − e0W1)W1+1

W1
, b
a+c−b ,

r(P1+1)
g(P1+wU )). In order to check

this, we first carry out the linear stability analysis around the equilibrium solution. The
system (2) is linearized around the equilibrium solution (P1,W1, U1) as follows: P̃t

W̃t

Ũt

 =

c
W1
W1+1T + a W1

W1+1 − b (a+ c) P1
(W1+1)2

0

U1
1−wU

(P1+1)2
− W1

W1+1 d ∂2

∂x2
− P1

(W1+1)2
− e0

P1+wU
P1+1

−gU1
1−wU

(P1+1)2
0 ∂2

∂x2
− gP1+wU

P1+1


 P̃

W̃

Ũ

 , (39)

where T is an operator defined by (T P̃ )(x) =
∫ L

0 P̃ (y)Φapprox(x, y)dy. For the linear stability
analysis, it is necessary to know a series of eigenvalues for the operator T . However, they are
not obtained by hand, so we numerically compute the eigenvalues ρn (n = 1, 2, · · · ) such that∫ L

0 cos(nπyL )Φapprox(x, y)dy = ρn cos(nπxL ). When we set ξ = 0.088587, η = 400 and L = 0.25,
the eigenvalues of the operator T are obtained as follows:

ρ1 = 0.906018, ρ2 = 0.673825, ρ3 = 0.411369, ρ4 = 0.206153,

ρ5 = 0.084805, ρ6 = 0.028637, ρ7 = 0.007938, ρ8 = 0.001806,

ρ9 = 0.000337, ρ10 = 0.000052, · · · .
Therefore, for each Fourier mode, we have a series of linear systems of ordinary differential
equations P̃nt
W̃nt

Ũnt

 =

c
W1
W1+1ρn + a W1

W1+1 − b (a+ c) P1
(W1+1)2

0

U1
1−wU

(P1+1)2
− W1

W1+1 −d(nπL )2 − P1
(W1+1)2

− e0
P1+wU
P1+1

−gU1
1−wU

(P1+1)2
0 −(nπL )2 − gP1+wU

P1+1


 P̃n
W̃n

Ũn

 ,

n = 1, 2, 3, · · · . Investigating zero eigenvalues of these linearized matrices, we know the
location of bifurcation points on the constant solution branch (P1,W1, U1). When we focus
on the parameters r and d, a bifurcation curve for n mode, where an eigenvalue takes zero,
is obtained as

Γn ={(r, d) ∈ R2 |

(c
W1

W1 + 1
ρn + a

W1

W1 + 1
− b)(d(

nπ

L
)2 +

P1

(W1 + 1)2
+ e0)((

nπ

L
)2 + g

P1 + wU
P1 + 1

)

+ ((a+ c)
P1

(W1 + 1)2
)(
P1 + wU
P1 + 1

)(−gU1
1− wU

(P1 + 1)2
)

+ ((a+ c)
P1

(W1 + 1)2
)(U1

1− wU
(P1 + 1)2

− W1

W1 + 1
)((
nπ

L
)2 + g

P1 + wU
P1 + 1

) = 0}.
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Based on the bifurcation curves, we know the stable and unstable regions of the equilibrium
solution (P1,W1, U1) in the (r, d)-plane. Figure 4 indicates the bifurcation curves {Γn} and

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 17  18  19  20  21  22

Γ1

Γ2

r

d

Unstable

Stable

Figure 4: Bifurcation curves, and stable and unstable regions of the constant solution
(P1,W1, U1) for (38) with (5). The horizontal and vertical axes mean the parameters r and
d, respectively. The other parameter values are the same as the ones in Figures 2 and 3.

the stable and unstable regions for the equilibrium solution. We can see from the figure that
for a suitably fixed value of d, the stability of the equilibrium solution (P1,W1, U1) changes
from stable state into unstable one as the value r increases from r = rc. When the value
r increases further, it recovers the stability. Moreover, we can expect that the one-mode
solution primarily bifurcates from the constant solution branch in this parameter setting
when the value of r increases.

Based on Figure 4, we numerically compute a global bifurcation diagram by using a nu-
merical bifurcation software AUTO [5]. Figure 5 shows a bifurcation diagram for d = 0.1
when the bifurcation parameter r globally varies. For small values of r, the bare state
(P0,W0, U0) = (0, r

e0g
, r
wUg

) is stable. As the value r increases, the homogeneous vegetation

state (P1,W1, U1) = (( rg−e0W1)W1+1
W1

, b
a+c−b ,

r(P1+1)
g(P1+wU )) appears stably due to the transcritical

bifurcation at r = rc = 16.9106 while the bare state (0, r
e0g
, r
wUg

) becomes unstable. However,
this uniform vegetated branch undergoes a subcritical pitchfork bifurcation at r = 16.9167 and
becomes unstable (see the enlarged figure in Figure 5). Although the nonconstant branches
resulting from the bifurcation point are unstable, they become stable via a saddle-node bi-
furcation at r = 15.5772 and keeps the stability up to r = 25.5270. And the saddle-node
bifurcations at r = 25.5270 change the stability of the branches and they connect to the con-
stant solution branch which means uniform vegetation states at r = 21.5037 as a subcritical
pitchfork bifurcation. Here, we note that a pair of nonconstant stationary solution branches
appears as a result of a pitchfork bifurcation, that is the upper and lower branches in Figure
5. Actually, we can identify these two branches because the stationary solution on the lower
branch corresponds to (P (L − x),W (L − x), U(L − x)) if a triplet (P (x),W (x), U(x)) is a
stationary solution on the upper branch. Therefore, the stability of these two branches coin-
cides. Stable nonconstant stationary solutions observed in the range 15.5772 < r < 25.5270
correspond to nonconstant stable vegetation patterns. In addition, one can see from the fig-
ure that there exist bistable regions in 15.5772 < r < 16.9167 and 21.5037 < r < 25.5270.
That is, there are two stable stationary solutions, a uniform state and a heterogeneous state
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Figure 5: Structure of steady states of (38) with (5). The horizontal and vertical axes
mean the parameter r and the value of P at x = 0. The solid and dashed curves in the
figures mean respectively stable and unstable branches. The mark � in the figure denote a
bifurcation point. Each of the branches corresponds to 1-Fourier mode and 2-Fourier mode.
The parameter values are a = 10, b = 5.2, c = 0.12, d = 0.1, e0 = 4, g = 4, wU = 0.2, η = 400
and L = 0.25.

in these parameter regions. The profiles of stable stationary solutions for some values of r
are shown in Figure 6. We can observe that the amounts of average biomass 1

L

∫ L
0 P (x)dx

increase as the rainfall parameter r increases. When the vertical axis P (0) in Figure 5 is re-

placed by the average biomass 1
L

∫ L
0 P (x)dx, the global bifurcation diagram is shown in Figure

7. This figure indicates that the biomass of heterogeneous steady states is always higher than
that of constant steady states for each value of r. Therefore, aggregation formation is more
reasonable for plants in drylands than uniform vegetation from the viewpoint of a survival
strategy.
Seed dispersal range as the bifurcation parameter. Next, we change the bifurcation
parameter from r to η in (5) to investigate how the seed dispersal range influences vegetation
patterns. Here, we note that small values of η in (5) correspond to long-range seed dispersal
and large ones correspond to short-range seed dispersal. Figure 8 shows a global structure
of steady states of (38) with (5) when the parameter η globally varies. When the value
of η is small, the homogeneous steady state (P1,W1, U1) only is stable. This means that
the long-range seed dispersal tends to stabilize uniform vegetated states. As the value of η
increases, the homogeneous steady state is destabilized at η = 67.4238 due to a subcritical
pitchfork bifurcation and a pair of branches of nonconstant steady state appears. However,
these branches become stable because of the saddle-node bifurcations at η = 39.9782. As
a result, stable nonconstant vegetated states are observed for η > 39.9782. In addition, we
know that another stable vegetated states appear from η = 1239.08. Figure 9 displays some
profiles of stable steady states in Figure 8. Since there are two stable branches for the large
η value, the two stable steady states for η = 1400 are shown in Figure 9. These results imply
that short-range seed dispersal (the large values of η) raises the maximum value of P and
promotes multiple stable patterns.
Seed germination rate as the bifurcation parameter. Last, we investigate the influence
of the seed germination rate c on vegetation patterns. So, we set the parameter c as a
bifurcation parameter. When the value of c is large, that is, the germination rate is high, we
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can expect that the homogeneous vegetated states is stable. Actually, as shown in Figure 10
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Figure 10: Structure of steady states of (38) with (5). Each of the branches corresponds to
1-Fourier mode, 2-Fourier mode, 3-Fourier mode and 4-Fourier mode. The parameter values
are a = 10, b = 5.2, d = 0.1, e0 = 4, g = 4, wU = 0.2, r = 21, η = 400 and L = 0.25. (a)
The horizontal and vertical axes mean the parameter c and the value of P at x = 0. (b) The

horizontal and vertical axes mean the parameter c and the average biomass 1
L

∫ L
0 P (x)dx.

which indicates a global bifurcation diagram when the germination rate c varies, one can see
that the homogeneous steady state is stable for large c values. As the value of c decreases,
it is destabilized at c = 0.21761983 via a subcritical pitchfork bifurcation and branches of
nonconstant steady states emerge, but the saddle-node bifurcations at c = 0.47446 stabilize
these branches. So, nonconstant stable vegetated states are observed for c < 0.47446. Figure
11 indicates the profiles of stable steady states for c = 0.001, c = 0.05, c = 0.2 and c = 0.4.
Figures 10 and 11 imply that the maximum value of P increases and the vegetated region
gets narrow as the value of c decreases.

4.3 Global structure of stationary solutions for other kernels

So far, we have discussed global structures of stationary solutions of (38) together with the
kernel (5) in one space dimension. However, we have several choices for the kernel k(x, y). In
this subsection, we numerically show global structures of stationary solutions for other types
of kernels and discuss the variation of bifurcation diagrams according to the choice of kernels.

We here consider the following three types of kernels:

k(x, y) =
1

ξ
e−η|x−y|, (40)

k(x, y) =
1

ξ
max{1− η|x− y|2, 0} (41)

and

k(x, y) =
1

ξ

(
e−η(x−y−ζ)2 + e−η(x−y+ζ)2

)
. (42)

The exponential kernel (40) has a cusp and a tail, whereas the quadratic kernel (41) has no
tail (see Figure 12(a)). On the other hand, the kernel (42) possesses a bimodal shape for
suitable values of ζ. Figure 12(b) displays kernel shapes of (42) for some ζ values. When a
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Figure 11: Profiles of stable stationary solutions in (38) for some values c. The solid, dashed
and long dashed short dashed curves indicate P , W and U , respectively. The other parameter
values are the same as the ones in Figure 10.
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Figure 12: (a) (red) kernel shape (5) with η = 400. (blue) kernel shape (40) with η = 25.
(green) kernel shape (41) with η = 200. The horizontal axis means x and y = 0.125. (b)
kernel shape (42) with η = 800. (red) ζ = 0. (blue) ζ = 0.03. (green) ζ = 0.05. (magenta)
ζ = 0.07. The horizontal axis means x and y = 0.125.
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plant disperses the seeds far away, it is supposed that the peak of the seed density is located
away from the position of the plant. For describing this situation, bimodal kernel shapes like
Figure 12(b) may be suitable.

For unimodal cases, we give global bifurcation diagrams for (38) with (40) and (38) with
(41) in Figures 13 and 14, respectively. It turns out that qualitatively similar bifurcation
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Figure 13: Structure of steady states of (38) with (40). Each of the branches corresponds to
1-Fourier mode and 2-Fourier mode. The parameter values are a = 10, b = 5.2, c = 0.12,
d = 0.1, e0 = 4, g = 4, wU = 0.2, η = 25 and L = 0.25. (a) The horizontal and vertical axes
are the parameter r and the values of P at x = 0, respectivey. (b) The horizontal and vertical

axes are the parameter r and the average biomass 1
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∫ L
0 P (x)dx, respectivey.
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Figure 14: Structure of steady states of (38) with (41). Each of the branches corresponds to
1-Fourier mode and 2-Fourier mode. The parameter values are a = 10, b = 5.2, c = 0.12,
d = 0.1, e0 = 4, g = 4, wU = 0.2, η = 200 and L = 0.25. (a) The horizontal and vertical
axes are the parameter r and the values of P at x = 0, respectivey. (b) The horizontal and

vertical axes are the parameter r and the average biomass 1
L

∫ L
0 P (x)dx, respectivey.

diagrams to Figures 5 and 7 are obtained. When we focus on the unimodal case, these results
suggest that the choice of suitable kernels is not of great influence on the global structure of
stationary solutions. That is, if the kernel is a unimodal type, a similar tendency of vegetation
patterns may be exhibited.
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Next, we display global structures of steady states of (38) with (42) for some ζ values
in Figure 15. When ζ = 0, the kernel possesses a unimodal shape as shown in Figure
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Figure 15: Structure of steady states of (38) with (42). The horizontal and vertical axes mean
the parameter r and the values of P at x = 0, respectivey. Each of the branches corresponds
to 1-Fourier mode, 2-Fourier mode and 3-Fourier mode. The parameter values are a = 10,
b = 5.2, c = 0.12, d = 0.1, e0 = 4, g = 4, wU = 0.2, η = 800 and L = 0.25.

12(b). In this case, we observe stable and heterogeneous vegetation states in the range
15.5383 < r < 27.2551. Besides, there are bistable regions which mean the coexistence
of uniform steady states and heterogeneous ones in 15.5383 < r < 16.9137 and 21.5716 <
r < 27.2551. As the value of ζ increases, the two peaks of the kernel are located away
from the center as shown in Figure 12(b). Then, global structures of steady states when
the value ζ increases vary gradually. In particular, the parameter region where stable and
heterogeneous vegetation states are observed becomes narrow: 15.5954 < r < 25.0128 for
ζ = 0.03, 15.7118 < r < 23.3372 for ζ = 0.05 and 15.8872 < r < 22.0956 for ζ = 0.07.
Figure 16 shows a global structure of steady states of (38) with (42) when the value ζ varies
as a bifurcation parameter. One can see from the figure that the homogeneous vegetation
state (P1,W1, U1) is stable for large ζ values, but it is destabilized by a subcritical pitchfork
bifurcation at ζ = 0.075173 when the value ζ decreases. And, the saddle-node bifurcations at
ζ = 0.095363 stabilize the unstable and nonconstant stationary solution branches emerging
from ζ = 0.075173. Therefore, stable and nonconstant stationary solutions are observed for
ζ < 0.095363. Figure 17 exhibits profiles of stable stationary solutions for some ζ values. As
the value of ζ increases, the maximum value of P decreases. These results imply that the
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kernel (42) with the large value of ζ tends to inhibit heterogeneity in this system.

4.4 Two dimensional vegetation patterns

In the previous subsections, we discussed the one-dimensional problem from the viewpoint of
bifurcation diagrams. We here consider the two-dimensional problem and discuss a transition
of vegetation patterns in a two dimensional domain when parameter values vary. We focus
on four parameters which are taken into account in the previous subsections and investigate
relations between vegetation patterns and the variation of the parameter values. The first is
the rainfall rate r, whose parameter is related to climate change. Figure 18 shows vegetation
patterns P at t = 5000 when the rainfall rate r changes. Here, we compute (2) together

r = 16.5 r = 17 r = 18 r = 19

r = 20 r = 21 r = 22 r = 23

r = 24 r = 25 r = 26 r = 27

Figure 18: Vegetation patterns P on a square domain (0, 15) × (0, 15) when the value of r
varies. The other parameter values are the same as the ones in Figure 5. The color scale
indicates that green color corresponds to high plant density and white color corresponds to
less plant density.

with the two dimensional version of (5) under the Neumann boundary conditions and initial
conditions (P0,W0, U0) or (P1,W1, U1) with spatially nonuniform perturbations. We have
confirmed that patterns at t = 5000 presented in this paper are almost steady states. For the
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small values of r and for the large values of r, we numerically observed no vegetation states
(P0,W0, U0) and uniform vegetation states (P1,W1, U1), respectively. For the moderate values
of r, heterogeneous vegetation patterns are exhibited. As the rate r increases, spot patterns
(r = 16.5), stripe patterns (r = 18, 19) and gap patterns (r = 20) are observed. These
results indicate that vegetation patterns change according to the rainfall rate r, which is a
good agreement with field observations. However, when the value r increases further, the
system (2) surprisingly exhibits complicated patterns like a labyrinth which are displayed
in Figure 18 (r = 22-27). Depending on the value of r, the stripe width of the vegetation
patterns gets thicker. For r > 30, uniform vegetation states are observed. We note that the
parameter region where the labyrinth patterns are observed (22 < r < 30) is bistable, that
is, homogeneous vegetation states and heterogeneous ones coexist in this parameter region.

Secondly, we show a transition of two-dimensional vegetation patterns when the parameter
η varies, which corresponds to Figure 8 in the one-dimensional case. Here, we note that the
parameter η means the seed dispersal range. When the value of η is small, that is long-
range seed dispersal, uniform vegetation states are obtained as well as in the one-dimensional
case. As the value of η is large, namely short-range seed dispersal strategy, heterogeneous
vegetation patterns are observed as shown in Figure 19. Depending on the seed dispersal

η = 50 η = 100 η = 200 η = 800

η = 1200 η = 2000 η = 4000

Figure 19: Vegetation patterns P on a square domain (0, 15) × (0, 15) when the value of η
varies. The other parameter values are the same as the ones in Figure 8.

range η, vegetation patterns vary from spots to stripes. In particular, one can see that the
short-range seed dispersal which corresponds to the large value of η makes the width of
vegetated region narrow while it makes the biomass density of vegetated region high.

The third case is on the seed germination rate. Figure 20 shows the effect of the seed
germination rate c on vegetation patterns. When the seed germination rate is quite small, veg-
etation patterns with very narrow width and very high density are formed (c = 0 and 0.001).
As the value of c increases, the width of vegetated region becomes thick and the biomass
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c = 0 c = 0.001 c = 0.05 c = 0.1

c = 0.2 c = 0.3 c = 0.4 c = 0.6

c = 0.8 c = 1 c = 1.4

Figure 20: Vegetation patterns P on a square domain (0, 15) × (0, 15) when the value of c
varies. The other parameter values are the same as the ones in Figure 10.
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density of vegetated region becomes low. And eventually uniform vegetation states are gen-
erated for c = 1.5. As well as the one-dimensional case in Figure 10, the high germination
rate results in uniform vegetation.

Finally, we show a transition of vegetation patterns when a kernel shape gradually changes
from two-dimensional Gaussian function to a ring-shaped function whose peak is located away
from the center, which corresponds to Figure 16 in the one-dimensional case. In other words,
we use the two-dimensional version of the kernel (42) (see also Figure 12(b)) and change the
value of ζ in the kernel. Numerical results according to the change of ζ are illustrated in
Figure 21. As the peak of the kernel is apart from the center, that is, the value of ζ increases,

ζ = 0 ζ = 0.05 ζ = 0.09 ζ = 0.2

ζ = 0.5 ζ = 0.75 ζ = 1.5 ζ = 2

Figure 21: Vegetation patterns P on a square domain (0, 15) × (0, 15) when the value of ζ
varies. The other parameter values are the same as the ones in Figure 16.

the patterns tend to change into regular gaps (ζ = 0.5, 0.75, 1.5 and 2). These numerical
results suggest that a strategy where plants spread the seeds far away (the peak of seed density
is located away from the center) facilitates the formation of regular gap patterns.

5 Concluding remarks

In this paper, we have discussed a nonlocal system for vegetation in drylands: as argued in
[27], in order to describe the plant dispersal, it is more reasonable to use a nonlocal term than
to use a diffusion term. We have obtained the existence and uniqueness of a global solution in
the nonlocal system, global structures of stationary solutions in the one-dimensional problem
and relations between some parameters and two-dimensional patterns. The well-posedness is
important as an estimate of the validity of the model. Also, when the kernel shape included in
the nonlocal term changes, we investigated how it influences patterns. Although the nonlocal
system discussed here is not a reaction-diffusion system, nonconstant vegetation patterns
reminiscent of Turing patterns have been exhibited in a self-organized way. In this regard,
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understanding of the relation between a nonlocal system and a reaction-diffusion system is
progressing [25].

We numerically demonstrated relations between four parameters in the system and veg-
etation patterns: the rainfall rate r, the seed dispersal range η, the seed germination rate c
and the peak distance of the seed density from the center ζ. The relation between the rainfall
rate and vegetation patterns has been discussed in several papers [7], [8], [10], [18], [27], [30],
[38]. These papers reported that bare soil states, spot patterns, stripe patterns, gap patterns
and uniform states are observed in turn according to an increase in the precipitation rate.
However, the nonlocal system discussed in this paper exhibits labyrinth patterns for relatively
large values of r, which possess wider vegetation stripes (see Figure 18). In other words, bare
soil states, spot patterns, patterns with narrow stripes, gap patterns, patterns with wide
stripes and uniform states are observed in this system according to an increase in the value
of r. We note that the wide stripe patterns observed for relatively large values of r are kept
without drastic change even though the numerical computation continues furthermore. On
the other hand, we showed a transition of vegetation patterns when the parameter η varies in
Figure 19. When the value of η tends to infinity, we expect that

∫
Ω P (t, y)Φ(x, y)dy → P (t, x).

Then, the equation for P in (2) turns into

∂P

∂t
= a

W

W + 1
P − bP + c

W

W + 1
P

in this limiting situation. Therefore, it seems that a vegetation pattern when the value of η
tends to infinity possesses narrow width and high biomass density of vegetated regions like
that for c = 0 in Figure 20. Actually, one can see a tendency that the width of vegetated
region becomes narrow and the biomass density of vegetated region becomes high depending
on an increase in the value of η. However, the numerical simulation for η > 4000 is very hard
because of the spatial discretization.

Finally, we remark on the system (2) with the two-dimensional version of the kernel (42)
which possesses a ring-shaped configuration for suitable ζ values. Interestingly, as shown in
Figure 22, a strange and complicated pattern is generated when ζ = 1, which is completely
different from regular gap patterns in Figure 21. Since such a pattern is never observed in

Figure 22: Vegetation patterns P on a square domain (0, 15)× (0, 15) when ζ = 1. The other
parameter values are the same as the ones in Figure 21.

the system (2) with a single peak kernel like a two-dimensional Gaussian function, it seems
that the system (2) with a ring-shaped kernel includes rich mathematical structure from
the viewpoint of pattern formation. Therefore, a strategy that plants spread the seeds far
away may involve a variety of complicated vegetation patterns. Further investigation will be
needed.
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We point out some controversial issues of the nonlocal model. As shown in Figure 3, the
plant density P linearly increases as the rainfall rate r increases, which indicates that there is
no saturation effect of the plant density in the system. In this point, the papers [20], [38] treat
a model which takes into account ecological constraints. Moreover, the nonlocal model should
include different time scales. For example, the time scale of water movement and infiltration
should be different from that of plant growth, establishment etc. From these points of view,
we think the model could be improved, and further analyses are required.
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