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Abstract

We recover the so-called field-road diffusion model as the hydrodynamic limit of
an interacting particle system. The former consists of two parabolic PDEs posed
on two sets of different dimensions (a “field” and a “road” in a population dynamics
context), and coupled through exchange terms between the field’s boundary and
the road. The latter stands as a Symmetric Simple Exclusion Process (SSEP):
particles evolve on two microscopic lattices following a Markov jump process, with
the constraint that each site cannot host more than one particle at the same time.
The system is in contact with reservoirs that allow to create or remove particles at
the boundary sites. The dynamics of these reservoirs are slowed down compared to
the diffusive dynamics, to reach the reactions and the boundary conditions awaited
at the macroscopic scale. This issue of bridging two spaces of different dimensions is,
as far as we know, new in the hydrodynamic limit context, and raises perspectives
towards future related works.
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1 Introduction

The goal of the present work is to derive the field-road diffusion model as the hydrody-
namic limit of an interacting particle system. The former was introduced by Berestycki,
Roquejoffre and Rossi [10] in order to describe spread of diseases or invasive species in
presence of networks with accelerated propagation. It consists of two parabolic PDEs
posed on two sets of different dimensions (a field and a road in a population dynam-
ics context), and coupled through exchange terms between the field’s boundary and the
road — see subsection 1.1 for details. To asymptotically retrieve this deterministic model
from a stochastic interacting particle system, we consider a Symmetric Simple Exclusion
Process (SSEP) which evolves both on a finite discrete cylinder (the field) and its lower
boundary (the road). Characterizing the SSEP, the microscopic dynamics is tied with a
simple exclusion rule that forces each site to host at most one particle at the same time.
To manage in particular the coupling between the field and the road, the system is in
contact with reservoirs that allow to create or remove particles at the boundary sites of
the cylinder. The activity of these reservoirs is slowed down compared to the diffusive
dynamics, in order to align with the exchange terms awaited at the macroscopic scale.
The originality of our analysis stands in the coupling between two domains of different
dimensions, an issue that, as far as we know, has never been considered when recovering
diffusive PDEs as the hydrodynamic limit of exclusion processes — see subsection 1.2.

1.1 The field-road model for fast diffusion channels

Recently, there has been a growing recognition of the importance of fast diffusion channels
on biological invasions: for instance, an accidental transportation via human activities of
some individuals towards northern and eastern France may be the cause of accelerated
propagation of the pine processionary moth [46]. In Canada, some GPS data revealed that
wolves travel faster along seismic lines (i.e. narrow strips cleared for energy exploration),
thus increasing their chances to meet a prey [41]. It is also acknowledged that fast diffusion
channels (roads, airlines, etc.) play a central role in the propagation of epidemics. As is
well known, the spread of the black plague, which killed about a third of the European
population in the 14th century, was favoured by the trade routes, especially the Silk Road,
see [48]. More recently, some evidences of the the radiation of the COVID epidemic along
highways and transportation infrastructures were found [31].

In this context, the field-road model introduced by Berestycki, Roquejoffre and Rossi
[10] writes as

O = dAv + f(v), t>0, zeRr1l y>0,
—dOyv|y—o = au — Bvly—o, t>0, xeRrY (1.1)
O = DAu + pol,—o — au, t>0, zeRrL

The mathematical problem then amounts to describing survival and propagation in a non-
standard physical space: the geographical domain consists in the half-space (the “field”)
x € RP~! 4y > 0, bordered by the hyperplane (the “road”) x € R~ y = 0. In the field,
individuals diffuse with coefficient d > 0 and their density is given by v = v(¢,z,y). In
particular Av has to be understood as A,v + Jy,v. On the road, individuals typically
diffuse faster (D > d) and their density is given by u = wu(¢,z). In particular Au has
to be understood as A,u. The exchanges of population between the road and the field
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are described by the second equation in system (1.1), where « > 0 and § > 0. These
boundary conditions, and the zeroth-order term on the road, link the field and the road
equations and are the core of the model (see also the volume-surface systems [18], [26],
[23] in the context of chemical processes or asymmetric stem cell division).

In a series of works [10, 9, 11, 12], Berestycki, Roquejoffre and Rossi studied the
field-road system with p = 2 and f a Fisher-KPP nonlinearity. They shed light on an
acceleration phenomenon: when D > 2d, the road enhances the global diffusion and
the spreading speed exceeds the standard Fisher-KPP invasion speed. This new feature
has stimulated many works and, since then, many related problems taking into account
heterogeneities, more complex geometries, nonlocal diffusions, etc. have been studied
[5, 6], [33], [44, 45, 43|, [51], [47], [22], [7, 8], [1, 52], [16].

Very recently, the purely diffusive field-road system — obtained by letting f = 0
in (1.1) — has attracted some attention. Hence, an explicit expression for both the
fundamental solution and the solution to the associated Cauchy problem, and a sharp
(possibly up to a logarithmic term) decay rate of the L norm of the solution were
obtained in [3]. In a bounded domain, the long time convergence was studied [2] through
entropy methods, in both the continuous and the discrete (finite volume scheme) settings.

From now on, we thus consider the purely diffusive field-road model. By using the

rescaling
- t x vy N t x o
'U(t,l',y)_v</\2,/\,)\>, u(t,x)—)\u()\2,)\>, )‘Zga

we see that it is enough to consider the case @ = (. Also, for p > 2, we work in the
p-dimensional open finite cylinder

A =T x(0,1),

where T is the one-dimensional torus R/Z. For v, we impose the zero Neumann boundary
conditions on the upper boundary TP~! x {y = 1}. This insures the conservation of the
total mass, namely [pp-1, (o 1) (¢, 2, y)dxdy + [rp-1 u(t, x)dz, therefore modeling a purely
diffusive process within a closed environment. Denoting n the unit outward normal vector
to OA, the considered system is thus

O = dAwv, t>0, xeTr ' ye(0,1),
—dOyv]y—0 = au — avl,—o, t>0, ze€Tr 'l y=0, (12)
0w = DAu + av|y—o — au, t>0, xeTr
& =0, t>0, zeTr !, y=1,
supplemented with an initial condition
{ Vli—o = vo € L®(A) N[0, 1", reTt ye(0,1), L3
uli—g = ug € L>=(TP1) N0, I]TZH : r e TP L ‘

Note that, given the linear nature of the system (1.2), the use of initial data bounded by
1 is a simplification that does not compromise the generality of our analysis. This choice
is actually imposed by the exclusion rule, see Remark 2.3.
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1.2 Interacting Particle Systems and Simple Exclusion Processes

The field of interacting particle systems is a branch of probability theory that emerged
in the early 1970s, focusing on Markov processes inspired by models from statistical
physics and biology. Analysis occurs at both the microscopic level of particle dynamics
and by scaling from microscopic to macroscopic levels. This involves space and time
renormalization procedures to derive hydrodynamic limits, represented by PDEs that
describe key model quantities such as particle densities.

Introduced by Frank Spitzer in [49], the exclusion process are interacting particle
systems from which can be recovered a large variety of diffusive systems driven out of
equilibrium, see the pioneering works [50], [40, 39]. We refer to the seminal book [34]
for the complete derivation of the Heat equation on a torus from a nearest-neighbor
exclusion process which consists in a collection of continuous-time random walks evolving
on a lattice (see below for details).

When boundaries are considered, the system is in contact with some so-called reser-
voirs, see [36], [19, 21, 20] where Dirichlet boundary conditions are recovered. Recently,
a lot of effort has been put in understanding the case of exclusion process whose dynam-
ics is perturbed by the presence of a slow bond [15], [27], or by slow boundary effects
(27, 28, 29], [4], [35], [37], [13].

Let us comment more precisely on some of the outcomes obtained in [4]. The authors
specifically examine the hydrodynamic behavior of a symmetric simple exclusion process
with slow boundary. This means that, at the boundary sites, particles can be born or die
at slower rates (depending on the scaling parameter N) than events occurring in the bulk.
The hydrodynamic limit is then the Heat equation, supplemented with Dirichlet, Robin,
or Neumann boundary conditions, depending on the scaling of the boundary rates.

The present work stands at the crossroads of this framework, the reaction-diffusion is-
sues and epidemiology /population dynamics modeling. With that respect, let us mention
the very recent work [42] where a reaction-diffusion system modeling the sterile insect
technique is retrieved. The very originality of our work stands in the fact that the con-
sidered system is posed on sets of different dimensions a case which, as far as we know, is
considered for the first time in the interacting particle system literature.

2 Notations and main result

All the notations used in this paper are gathered in the Table of Notations at the end of
this document.

2.1 Sets and related notations

As announced above, in the macroscopic setting, we work in the p-dimensional open finite
cylinder

A:=TP 1 x (0,1),
where T designates the one-dimensional torus R/Z. The boundary of the domain is
denoted
I=0A={(z,y) €A |y=0o0ry=1} =T x {0,1},
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with A the closure of A. We partition I' into two parts representing the lower and upper
boundaries of the cylinder:

v =T ' x {0} and  I'™:=T"'x {1}.

At the microscopic level, given an integer N > 2, we define Ay and 'y as the cor-
responding discrete microscopic sets. Specifically, by letting Ty := Z/NZ the discrete
one-dimensional torus of length N, and using the notation [a;b] := [a,b] N Z for any
a,beR,

Ay =T x [1;N —1]

represents the cylinder in ZP of height N — 1 and basis ']I'f,?v_l, its boundary being
Ty :={(G,j)€An]|j=1or N—1} =T "' x {1,N —1}.
Similarly, I'y = 't UT'Y with
rov = Th ' x {1}  and W= TR x {N —1}.
The elements of A are represented by
z2=(z,y) and 2 = (z,w),
with z,z € TP~! and y,w € (0,1), while those of Ay are symbolized by the letters
2=(i,7) and &= (kV),

with i,k € T% " and j,¢ € [1; N — 1].

2.2 Description of the microscopic model

We consider the evolution of two kinds of interacting particles on the lattices Ay (the
microscopic field) and T'" (the microscopic road). The associated stochastic dynamics is
described by the temporal evolution of a Markov process denoted by (7, & )cjo,r), Where
T > 0 is a given temporal horizon. Particles tied to the dynamics of n (the “field-
particles”) evolve in the whole microscopic field Ay, while the particles corresponding to
the dynamics of £ (the “road-particles”) evolve solely on the microscopic road T'", that
stands as the lower frontier of the microscopic field!. Both types of particles follow an
exclusion rule in its respective environment: each site 2 = (4,j) € Ay can host at most
one field-particle, and similarly, each site ¢ € T'%" can host at most one road-particle.
Note in particular that at a site ¢ € 'y, there may be a field-particle and a road-particle.

The overall dynamics emerge from the superposition of several independent ones,
which are individually specified below and collectively depicted in Figure I:

low

Tt is important to note that the microscopic road I’ ~' is actually embedded in ZP~1. For the purpose
of simplifying notations and facilitating understanding, we often make an identification between (i, 1) and
1, establishing a one-to-one correspondence between the lower boundary of the microscopic field and the
(p— 1)-dimensional torus. In line with this simplification, we will use £(i) and (%) to denote what are, in
fact, £(¢,1) and n(i,1). This is a deliberate choice to streamline the expressions without compromising
the accuracy of the mathematical representations involved. Similarly, on the upper microscopic boundary
I'V, we may write 77(7) to represent n(i, N — 1), provided this does not lead to any ambiguity.
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® Diffusion in the field. Within Ay, the field-particles follow a simple exclusion pro-
cess and jump at exponential times. The dynamics of this process is as follows: a particle
located at site 7 awaits an exponential time after which it jumps to a neighboring site &
with speeded rate N2d, for some fixed d > 0. However, if the site & is already occupied,
the jump is prevented in accordance with the exclusion rule.

® Diffusion on the road. Similarly, the road-particles follow a simple exclusion process
on THS ' a particle positioned at site i awaits an exponential time after which it jumps
to a neighboring site k with speeded rate N2D, for some fixed D > 0. However, if the
site k is already occupied, the jump is inhibited.

® Reservoir at the upper field’s boundary. The dynamics defined on the upper bound-
ary I'y act as reservoirs for the field-particles that are much slower compared to the rate
of jumps in the bulk. Fix a constant 0 < b < 1, for each site 7 € 'y, the following events
occur, according to exponential times that are independent of all others:

— In the absence of a particle, a new one is generated with rate b.
— Conversely, if a particle is present, it is eliminated with rate 1 — b.

®e Fxchange dynamics between the lower field’s boundary and the road. We now
describe the interacting behavior between the road-particles and the field-particles at the
lower boundary of the microscopic field T'$". Fix « > 0, for each site 7 = (i,1) € T,
according to exponential times, the following scenarios may occur:

— If a road-particle is present and no field-particle exists, then a field-particle is gen-
erated at site 7 with speeded rate Noa (¥). Independently, the road-particle is
eliminated with rate o ().

— Conversely, if a field-particle is present without a road-particle, then the field-
particle is eliminated with speeded rate Na (#). Independently, a road-particle
is generated with rate o (a).

The configuration space is given by
Sx = {0, 1} % {0, 1}'K"
—_——— ——
—: gheld = Srond

which we endow with the product topology. The elements of Sy, referred to as config-
urations, are denoted by (n,£). The first marginal n represents a configuration within
the state space S, To be more specific, in a given configuration 7, for any %2 in Ay,
n(?) = 1 means the site 7 is occupied. Conversely, (%) = 0 signifies that the site 7 is
empty. Similarly, the second marginal ¢ stands for a configuration within the state space
Siod - and for any ¢ in Ty, the value £(i) indicates the occupancy status of particle at
site ¢ in a given configuration £.

For any configuration 7 in S (resp. ¢ in S%*), and any sites 2, % in Ay (resp. i,k
in T'9%), let n™* (resp. &%) be the configuration obtained from 7 (resp. &) by switching
the values at 2 and # (resp. i and k), namely

N if =R €G)  itm—k,
(n"") (M) =<n(k) if =17, resp.  (£"%)(m) = &(k)  if m =1,

n(m) otherwise, &(m) otherwise
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For the sites 2 € Iy (resp. i € I'yY), let 772 (resp. £') be the configuration obtained from
n (resp. &) by flipping the occupation number at site 2 (resp. i), namely

oA 1—n(m) ifim =71, ; 1—¢&¢(m) if (m) =1,
(")) =9 . . resp.  (§)(m) = .
n(m) otherwise, &(m) otherwise
Spawn Kill B .
bg /Q\Bl_b AN—TNX[[].,N—].H
N-17 0 O O O O Iy by
N A
N2d N2d N2d
\ 2 \
1 -0 O O O @
1IN _” \
N%d N*d N2 | N
, 3 <\
Field () 340 O o ) O-
X IR

s
\/
\__ "
N23d N3d N2d

i \_2/, ,> b » Exchange dynamics
N2d N2d Na _é_ a
j=1- ‘C\/C O O——O T N I
N2d \Q/ |Exchaﬁge dynafnicsl—» -6- -d)-
Road () { -0 o O o\/o‘ My | EO FO

/
o’ N N @ [ (o)
I I I I I & |-O- Na
1=10 1 N -1 0
Figure I — The microscopic dynamics in dimension p = 2. In the field, particles are

represented by green dots © and jump towards one of their adjacent sites at exponential times
with mean frequency N2d — “with rate N2d” for short. Moves to already occupied sites are
prohibited by the exclusion rule, and are indicated by the symbol @. Similarly, particles on
the road are depicted by the blue dots © and jump to their neighboring unoccupied sites with
rate N2D. At the upper boundary of the field I'\}, particle emerge in empty sites with rate b
and are removed with rate 1 — b. The interactions at the lower boundary of the field Ty allow
the coupling between the field and the road and play a central role in the model. These are
detailed in the “Echange dynamics” panel on the right-hand-side of the figure. For clarity and
to facilitate understanding, T'" is represented twice to distinguish between the particles at the
lower boundary of the field and those on the road. Notice also that not all possible jumps are

represented.

Fix a,d, D € (0,00), and 0 < b < 1. The generator of the microscopic dynamics,
Ly : R 5 RSV is split as follows:

road diffusion reg,(():%idon
_ 2 trfield 2 frroad Rob reac up
field diffusion lower Robin upper

condition reservoir
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where, for any f: Sy — R and any (n,€) € Sy,

) =5 ¥ [0 - rm.9), 2.2)
P
a D ;
(5 f) (n,6) = 22 [f(n.6%) = F(,9)], (2.3)
li—k|=1

(25 F) .6 =a 3 (n() - @) [£0r,€) - Fn.€)] . (2.4)

(LN e = 3 () —€@)” [1n.€)— 1m0 (2.5)
(LR (0,6) = > (b1 =n(i) + (1= bn(i)) [£(7',€) = f(n,€)]. (2.6)

iel'y
In (2.2) and (2.3), we use |-| to denote the infinity norm in R?, that is
2] = max(fia], -+ lipal, 1), V7€ An.
Also, we highlight that the flip rate a(n(i) — £(4))? in (2.4) and (2.5) arises from equality

(1= (i) £() +n(i) (1 = £@) = (n(d) — €))7,

which holds since both 7(i) and (i) belong to {0, 1}.

The parts (2.2), (2.3) and (2.6) are rather classical, see [34], [4], [42] for instance.
On the other hand, the parts (2.4) and (2.5) are original, their role being to catch the
exchange condition in the field-road model. We refer to [28] and [30] for related issues.

For a given time horizon T" > 0, we denote (1, & )icppo,r) the Markov process with state
space Sy associated to the generator L. We define D([0,77]; Sx) as the path space for
cadlag time trajectories valued in Sy. Given a measure py on Sy, we denote by P4" the
probability measure on D([0,7]; Sy) induced by puy and (1, & )icpor), and we write ER”
the expectation with respect to P4'. Moreover, the notation (-,),, refers to the scalar
product on L2 (Sy).

2.3 Functional spaces and macroscopic equations
For any integers n and m, we define the functional spaces
C™([0,T] x A) and  C™™([0,T] x TP7})
which respectively consist of functions
G=Gt2):[0,T]xA—-R and H=H(tzx):[0,T] xT ' =R,

that possess n continuous derivatives with respect to the time variable on [0, 7], and m
continuous derivatives with respect to the spatial variable on A and T?~! respectively. We
also introduce the subset C*™ ([0, 7] x A) of functions with compact support in [0, 7] x A
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within C™™([0,T] x A). Similarly, we denote C™(A) and C™(T?~!) the sets of functions
with m continuous derivatives on A and TP~! respectively.

In the whole document, if ¢ is a function that depends both on the time and the
spatial variables, the abbreviation ¢(t) obviously stands for ¢(t,-).

In the sequel, the notations (-,-)5 and {.,-)1»-1 respectively represent the L?(A) and
L*(T?~!) inner products.

We consider the Sobolev space H'(A) as the set of functions g in L?(A) such that for
every ¢ ranging from 1 to p, there is an element 9, g in L?(A), for which we have

(0e,G, g)n = —(G, 0e,9) A, VG € CXX(A),

where 0., denotes the derivative with respect to the g™ canonical vector of R?. We then
define the norms on the Sobolev space H!(A) by

» 1/2
lglhrcs) = (ugnm iy Haqunm) |
q=1

With respect to a given Banach space B (most of the time, B = H'(A) or B =
L*(T?~1)), we define L?(0,T; B) as the function space composed of maps ¢ : [0,7] — B
satisfying

T
| el dt < +oo.

In order to define the value of an element g in H*(A) at the boundaries I' = T UT*",
we need to introduce the notion of trace. The trace operator on the space H!(A) can be
defined as the bounded linear operator

Tr: H'(A) — L*(T)
such that Tr extends the classical trace, that is
Tr(g) = g|r, Vg € HY(A)NC(A).

We refer to [24, Part 11, Section 5] for a detailed survey of the trace operator. In the sequel,
for any point 2 = (x,y) in I and any function g belonging to the space L?(0,T;H'(A)),
all the expressions ¢(t,2), g(t,x) or g(t,-)|r(x) represent the trace operator applied to
g(t,-) at position Z € T'. Additionally, observe that d,g(t,-) (resp. —d,g(t,-)) stands for
the normal derivative of the function g(t,-) on the boundary T™ (resp. T"°¥).

We are now in a position to introduce our notion of weak solution for the field-road
problem (1.2)-(1.3).

Definition 2.1 (Solving the field-road system) Fiz a time horizon T > 0. For any
measurable initial data vy : A — [0,1] and uy : TP~ — [0,1], a couple of functions (v, u)
is said to be a weak solution to the initial value problem (1.2)-(1.3) as soon as the following
two conditions (W1)-(W2) hold true:

(W1) ve L*0,T;H'(A)) and u € L*(0,T; L*(TP1)).
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(W2) For any G € CY*([0,T] x A), any H € CY*([0,T] x T*~Y), any t € [0,T], there
holds

(0(t), GO — (o0, GOy = [ (0(5). 0.Gs))yds + [ (uls), dAG(s) , ds

0

— [ {0lum19),40,Glyma (5)) -1 s+ /0' (olyo(5), d0,Glyo (g i ds (27)

+ /Ot a(u(s) — vly=o(s), Gly=0(5))pp-1 ds,

together with

(u0), (05— (o H(O)gos = [ (u(5), 0H () gy + / ), DALH(5)) gy ds
(2.8)

[ @ (ely(s) = u(s), H($))g, 1 ds.

2.4 Main Results

We use the notations M and M™ to denote the sets of positive measures on A and I'°¥
whose total mass is bounded by 1, and we define the space M as the Cartesian product
Meld e Mread - We denote the integrals of functions against measures indifferently for A
or I'*", namely, for any measures y € M and v € M™, and any functions G € L,,(A)
and H € L, (TP,
G) = / G udd)  and  (u H) = / H(z) v(dx).
A TP~

We endow M, M and M™* with a topology induced by the weak convergence of
measures. It is worth mentioning that all these spaces are compact and Polish.

The empirical measure of a configuration (n,£) € Sy is defined as 7y (7, ), where the
map 7wy : Sy — M is given by

n(n,§) (Np Z n(7 z/NJ N1 Z £(i) z/N)- (2.9)

2 EAN ZEFlOW

=) =i (©)
In (2.9), the notation d; y (resp. d;n) stands for the Dirac mass at place 2/N (resp.

i/N). For any configuration (1,£) € Sy, any G € C°(A) and any H € C(T"" '), we
denote
(mn(n,€), G, H]) = (73" (n), G) + (my*(€), H).

We introduce (7n (t))icjo,r) := (Tn (15 &) )eepo,r), the Markov process on the state space
M induced from (7, & )co,r). The trajectories of this process occupy D([0,T]; M), the
designated path space for cadlag time trajectories valued in M. We endow D([0,7]; M)
with the Skorokhod topology. For further details regarding this topology, we refer the
reader to [14], which provides an extensive survey on this subject. For G € C%°([0, T]x A),
H e C%([0,T] x TP7Y), and t € [0, T], we denote

(mn (£), [G(8), H@B)]) == (ay" (1), G (1)) + (7™ (t), H(1))
= (mn(m), G(t)) + (7" (&), H (1))
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Given an initial probability measure py on Sy, we define, for N > 2, the probability
measure Q4 := PA¥(7y') on the set of measures M, as the law of the Markov process
(WN(t))te[O,T] = (7 (M, ft))te[o,T}-

Essentially, Q" allows to provide a description through measures on the macroscopic
space of the state distribution of the process when initiated from the measure py.

Definition 2.2 (Sequence of measures associated with the initial data) Let
vo: A — 10,1 and wup: TPt —[0,1]

be two measurable functions. We say that a sequence of probability measures

(1n)ns2 = (N ) N2

on Sy = S x S is associated with (vg, ug) if

1€ SE s |(rk ), G) — (w0, G,

> 5] =0, (2.10)

: field
i o
and
]\}i—{noo l‘?f’/ad [5 S S;\(;ad : ’<7T§€7ad(€)7 H> - <u07 H>F10W

for any § >0 and any G € C°(A) and H € CO(T*).

Remark 2.3 Observe in Definition 2.2 that we ask vy and ug to be valued in [0,1]. This
condition cannot be relazed because of the exclusion rule, that enforces the sites to host at

most one particle. To be convinced with this, consider the case ug = 2, and take H = 1.
We then have (ug, H)piow = 2, and

> 5] =0, (2.11)

(T H) = g 3 €<y X 1=1

ielgY iellow

so that no configuration allows the limit (2.11) to hold, and the data uy = 2 is unreachable.
Here is the main contribution of the present work.

Theorem 2.4 (Hydrodynamic limit) Fiz a time horizon T > 0. Let vy : A — [0,1]
and ug : TP~ — [0,1] be two measurable functions, and (jn)n>2 a sequence of initial
probability measures on S associated with (vy,ug) in the sense of Definition 2.2. Then
the sequence of probability measures (Q') yso converges weakly towards some Q. which
gives mass 1 to the path -

<7rﬁeld(t,dacdy), (e, dx)) = (U(t@,y)dmd% U(t717>d$> 7

te[0,T] te€[0,T

where (v,u) is the unique weak solution to the Cauchy problem (1.2)-(1.3) in the sense of
Definition 2.1. In particular, for any t € [0,T], any § > 0, and any test functions

G eCY([0,T] x A) and H € CY([0,T] x T"),

we have

Jim B[ € S (5100, G(0) - (). G(0),] > 0] =0,

and

Jim PA & € S [(mir(0), H (D) = (u(t), H(O)ur

>5]:0.
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2.5 The steps to prove Theorem 2.4 and organisation of the paper

The proof of the hydrodynamic limit, as outlined in Theorem 2.4, is inspired by works such
as those by Kipnis and Landim [34] or Baldasso et al. [4], and unfolds in three distinct
steps. The first one is to prove the tightness of the probability measures (Q4)n>o within
the Skorokhod topology. This point, established in Section 3, is crucial to ensure the
existence of accumulation points for this sequence. Following this, we characterize, in
Section 4, the limit points Q,, of the sequence (QN')n>2. Specifically, it is demonstrated
that every Q. concentrates on measure processes with density relative to the Lebesgue
measure at every moment (subsection 4.1), and that the corresponding densities satisfy
conditions (W1)-(W2) (subsections 4.2 and 4.4) that characterize our notion of solution.
This proves that the density of the measures loaded by Q. are weak solutions to the
Cauchy problem (1.2)-(1.3). The third and final step, performed in Section 5, consists in
showing — thanks to very adequate test functions — that the Cauchy problem (1.2)-(1.3)
admits a unique solution.

3 DMartingales and tightness

3.1 Martingales

We now proceed to explain the martingales associated to our system. Fix a couple of
functions (G, H) with G € CY%([0,T] x A) and H € CH*([0,T] x T™v), and consider the
martingale .#xn = M ¢ u with respect to the natural filtration o((ns, &s)o<s<t) given for
any t € [0,T] by the Dynkin’s formula

Mg (t) = (), 1G(0), HO) — (ra(0),[G(0), HOW) = [ 01+ L) (m(s), [Gs), Hs)) ds. (3.1)

Expanding the empirical measure my with (2.9) in (3.1), we see that .#y can be split
into NG + A where

M) = (0, GO) — (754(0),GO)) — [ [0,+ L] [ (), Gl)] s, -

t
A () = (L), H ) — (i (0), H(0)) — /0 [0, + L] [(my(s), H(s)) | ds.
The quadratic variation of .#)y is given by the martingale Ay = Ay ¢ u defined for any
t€0,7] as
t
N(t) = Ly ()] — /O By (s)ds, (3.3)

where
Bn(s) =Ly [(mv(s), [G(s), H(S)W] —2(mn(s),[G(s), H(s)]) x Ln [(mn(s), [G(s), H(s)])] . (3.4)

A proof that .# and .4y are martingales with respect to the natural filtration is classical
and follows the very same lines as [34, Appendix 1, Section 5.
In the integral terms of .ZyG and .55 in (3.2) we expand the expressions of ",

9 (2.9), and Ly (2.1), and use at some point two discrete summations by parts. After
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some tedious but straightforward computations — using moves such as (n(i) — £(4))?(1 —

2(1)) = £(5) = n(d) or (b(1 (i) + (1 = BJn(i)) (1 = 20(3)) = b—n(i) — we reach
M) = (7510, 60)) — (n5(0), G(O)) — [ (5 (s), .G ()ds

1 t A A N
— M/o AZA dA];fG(s7 %) xns(7)ds — —/ Z d@NG(s, %) xns(7)ds
1EAN

. N;_l/ot EXF: dOY G(s, L) xna(i)ds — ﬁ/ N\;]: dON G (s, &) < n,(i)ds (3.5)
—Ni—l/otﬂzf( 8,30 % (&(0) = ds——/ ;pa < (b= ny(i))ds,

and

M) = <w;sdd<t>,H<t>> (w50, H(0)) — [ (ns(s), 0. H (s))ds )

/ > DAYH(s, %) <& i)ds — = / S° H(s, &) x (nai) — &(i))ds

EFlow EFlow

- Ne-l

In (3.5) and (3.6), the discrete Laplacians AY and 87% are defined by (time dependency
is locally drop for the sake of clarity)

i = i ; i—e . —
AVH (%) = N> [H(5e) = 2H () + H(5)] Vie T,
q=1
AVG(, 4) = N2 Y [G(He, 4y —2G(i, 3) + G5 )], Vi) Ay, BT
q=1
O G (3%) = N? |GG, 531 = 2G5, 4) + GG 574 W(i, j) € Av\T'y,

and the discrete derivative (%V at the boundary of the microscopic field by (time depen-
dency is locally drop for the sake of clarity)

850@71’;):{ e - (3.8)

Similarly, we also develop &y from (3.4) with the expression of Ly in (2.1). The
computations show that Zy can be split into B¢ + B with

A = 1o X ) - ®)] < [Nt ) - 6. )]
% AN -
|7—%|=1
+ ot NQp 1 Z |:773 £s<i>:2x |:G(S,;\J/v>:|2 (39)

i€l

4 ngp S [b(l — (i) + (1 — b)ns(i)} x {G(Sa fv)r

i
1€l



14 Matthieu ALFARO, Mustapha MOURRAGUI, and Samuel TRETON

and
B = ooy X [60) -6 W] x [N ) - 1. 4]
e 2 2 (3.10)
fe o [0 -6 < [Hs )|

; low
ey

3.2 Tightness

We are now in position to prove the tightness of (Q4')n>2.

Proposition 3.1 (Tightness) For any sequence of initial measures (pin)n>2 on Sy, the
sequence (QN)n>2 is tight in the Skorokhod topology of D([0,T]; M).

Proof of Proposition 3.1. In accordance with the method presented in [34, Chapter
4, Section 1], we must verify the following two statements for any G € C*(A) and any

H € C*(T"v):
(T1) For allt € [0,7] and all € > 0, there is M > 0 such that

sup { ]’(;"(‘(WN(t),[G,HD’ 2M>} < e (3.11)

N>2

(T2) For all € > 0, we have

lim limsup sup sup {Q%‘(’(WN(H—H), (G, H]) —(mn (1), [G,H])’ > €>} =0. (3.12)

60=0  Nooo te[s,T—0] |0|<5

Note that, within this proof, we require the test functions G and H to depend solely on

the spatial variable.
e Proof of (T1). Since the empirical measures 75 and 79*® are both bounded by 1, we

almost surely have
(TR0, G)| < IGlleay  and  |(@R(8), H)| < [[H]|poeqron):

As a result, (3.11) is achieved with M = &/(||G||poo () + [[ H || Loo (rrowy).

» Proof of (T2). By expanding the terms (mn(t + 0),[G, H]|) and (wy(t), |G, H]) with
those of the Dynkin’s formula in (3.1) and using the Markov and the triangular inequali-
ties, we can see that (3.12) holds if we prove the following limits:

lim limsup sup sup {EK} (‘.///N(t +0) — ///N(t)D} =0, (3.13)

=0 Nooo te[s,T—6] |0|<6
t+6

lim limsup sup sup {EK,‘(‘ Ly [(W?\?ld(S),G” ds >} =0, (3.14)
t

=0 Nooo te[5,T—5] |0|<5
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)} = 0. (3.15)

We start to show (3.13). Focusing on the terms between the brackets, the Cauchy-Schwarz
inequality yields

t+0

lim limsup sup sup {EK}(
=0 Nooo te[5,T—06] |0]<6

£N [< road( ),Hﬂ ds

t

E%"(’///N(He) — ///N(t)D < \/E]’%"([///N(t+9) —/%N(t)}2>

= \/w ([///N(t - 9)]2) —ER ({///N(t)]Q), (3.16)

where the second line arises from the martingale property. We use then the fact that the
quadratic variation .4y defined in (3.3) is a zero-mean martingale to simplify (3.16) into

t+6
E%"(’%N(He) - ///N(t)D < \/]E]’(,(/t B (5)] ds). (3.17)
Now observe from (3.9) and (3.10) that, for any s € (t — d,t + 9),

d/2 POy

@ 1 1
S I Glecn (15 ) + s Gl () + ol (2

\t k=1

|%ﬁeld( )| <

and

TOoal D/2 Z 1 o 1
|‘@ d( )| — sz 1) ||V HLOO(TP 1)<l kEFlow> + NQ(pfl) ||H||%oo(jfp*1) (’L’E%;ﬁrw)'

|i—k|=1

As a result, we have |B¥¢(s)] = O(1/N?) and |Zy4i(s)] = O(1/NP7'), and then
|Bn(s)| = O(1/NP~). Combining this control with (3. 17) the proof of the limit (3.13)
is then completed.

We move now on the proofs of (3.14) and (3.15). By similar computations as those
used to develop 3¢ and .35 in (3.5) and (3.6), we express the terms under the
integrals in (3.14) and (3.15):

A 1 A N
Ly [(w8).6)] = 1 X a6y an@+ 5 X a6k (i
LEAN LGAN\FN
Np — 3 dOYG () x (i) + Np Vo1 2 40, G() xms (i) (3.18)
i€l ieTlow
o 2 GGG =m0 + 5 3 Gl x (b= ()
ierloy SN
and

Ly [(m(s), H)| = NMX;WDAN (%) &) + NNE;WHﬁ x (i) = &(1),  (3.19)

where we recall that the discrete operators A, 9 and 9 are defined in (3.7) and (3.8).

yy’
Using then some Taylor expansions to control the discrete derlva,tlves in (3.18) and (3.19),
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we reach

Ly [(@59(s),G)] | < % <s?\p‘AxG) + 0(1/N)><l§i) + % (bup\ayyc:] +0 1/N)><?€A%\}N>
+ N]‘f_l <s1g> 0,G| +O(1/N)>< FW,) + (igg(aya\ +O(1/N))<i€%“1,>
o (prlo(5) (el 22)

and

L [(mip(s). )] | < _ng +mUN)@pJ+A§1<p )ng)

From this, it follows that |Ly [(75%(s), G)]| and |Ly [(7%*(s), H)]| remain bounded.
Therefore, for some constant C' > 0, we have

RAY (‘/wﬁN ﬁeld( ),G)} ds

>§C’6

and

(| [ e im0 s

)gca

whom the limits (3.14) and (3.15) are the straight consequence.

Having verified both conditions (T1) and (T2), we can conclude that the sequence
(Q))n>2 is tight with respect to the Skorokhod topology on D([0,7];M). This com-
pletes the proof. n

4 Characterization of the limit points of (Q')y>2

4.1 The limit points of (Q%')y>2 load paths with density

Proposition 4.1 (Loading Lebesgue continuous measure processes) Any limit point of
the sequence (QN')n>2, referred to as Q., is concentrated on the set D°([0,T]; M) of
couple of measure processes that are, at any time, absolutely continuous with respect to
the Lebesque measure on A and TP~! respectively. More precisely, for any Q. in the
closure of (Q)n>2, we have

Q. (D°([0, 71 M) =1,
where
D°([0,T); M) := { (Wﬁdd(t),Wroad(t))te[oﬂ € D([0,T]; M) such that,
for any t € [0,T], (Wﬁeld(t), Wroad(t)> is absolutely
continuous with respect to the Lebesgue measure on
(A x TY), with density (v(t,-), u(t,)) € [0, 1" x [0, 1] }
Indeed, the simple exclusion rule provides the controls
(7" (1), G < IGllray  and  [(7(), H)| < || H Ly o),

for any ¢t € [0,T], G € C(A) and H € C(T?*'). The conclusion of the proposition follows
from this and the Lusin theorem.
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4.2 The limit points of (Q%")y>2 load paths whose densities satisfy (W1)

The next step consists in showing that the limit trajectories own the regularity claimed
in (W1). Let us define the set %, by

te[0,T] t€(0,T]

Ly 1= {(wﬁe“(t),ﬂroad(t)) = (U(t,ﬁs\)d:%, u(t, x)dx) (v,u) satisfies condition (Wl)}

Then we have the following proposition.

Proposition 4.2 (Identification of the limit sets) Let Q.. be a limit point of the sequence
(Q%\)NZQ. Th6’ﬂ,
Qu(Hn) = L. (4.1)

The function u(t,-) being in L?(TP~!) directly follows from the simple exclusion rule
which forces u to be positive and bounded by 1. On the other hand, v(¢,.) being in
H'(A) comes from the Riesz representation theorem combined with the following energy
estimate.

Lemma 4.3 (Energy estimate) Given v € L*(0,T; L*(A)) and 1 < q < p, consider the
(potentially infinite) quantity

E,(w):=  sup {/OT ((5),0,G(s)), ds - ;/OTHG(s)HiQ(A) ds}. (4.2)

GeC2?([0,T]xA)

Then, for any q € [1;p],

te[0,T] te[0,T]

Q. ((Wﬁeld(t),wmad(t)) = (v(t, 8)d2, u(t, x)dx) E,(v) < +oo> =1.

A proof of Lemma 4.3 is given in Appendix A.3.

4.3 Replacement lemmas

Before to proceed with the limit equations satisfied by the densities loaded by the limit
points of (QK')n>2, we need to state two Replacement lemmas to correctly ensure the
convergence of the boundary terms of the martingale .# towards those of the weak
formulation in (W2) — see subsection (4.4) for details. The essence of these lemmas lies
in comparing the occupancy status of 1 at the boundary sites to the average number
of particles in their immediate vicinity. To state such a result, we must define these
“substitute objects”. For fixed 2 € I'y and € > 0, let

AN = {;% €Ay:[h—R| < 5N} = Ayn {2+ [-eN,eNT ), (4.3)
and define for € SF' the average number of particle of 7 inside the box AS", that is

nN(@) i=ene Y. n(R), (4.4)

ReAEN
1
where ¢y is the number of sites inside A%N , namely,

- ’AlN‘ _ [(QLeNj +1)"" x (1N + 1)}_1. (4.5)

The upper Replacement lemma is the following.
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Lemma 4.4 (Replacement at the upper boundary) Let (un)ny>2 be a sequence of initial
measures on Sy. For anyt € [0,T), and any test functions G € CH2([0,T] x A), we have

: . Loy
limsup limsup Ey
e—0 N—o00

/otNi—l > Gs, ) 75N () = na(D)] ds

] ~ 0. (4.6)

2eryy
0 i [eN] i i+eN] 0 AN = Ay N {3 +[-eN,eNT" }
! ! ! ! = (i,5)
. eN eN |
j=N-1+ =O —0 O O O— I'y
eN l I eN
— — - )
N 1 I_ENJ —CD— ! Y ’ —(>— AN — TN x [[17 N — 1H
©  eN  eN (c: b Iy
1 O J) é) (J) L
24 © O O O O
Iy
1- -O O O o O
Figure I — The upper Replacement lemma. For 7 = (i,j) € T'Y, we define A%N

as the intersection between Ay and the p-dimensional box of range 2e N centred on 2. Notice
that for fixed € > 0, the size of the box remains constant at the macroscopic scale. Lemma 4.4
establishes that, as N — oo followed by € — 0, the value of 77(/2\) can be replaced by nEN(/Z\)
which is the mean value of 1 inside A%N .

Similarly, the lower Replacement lemma is the following.

Lemma 4.5 (Replacement at the lower boundary) Let (un)ns>2 be a sequence of initial
measures on Sy. For anyt € [0,T), and any test functions G € CY*([0,T] x A), we have

lim sup lim sup E&"
e—0 N—o00

—0. (4.7)

/ot Ni > G ) 2N (2) = na(D)] ds

—1
7€llow

The proof of the Lemma 4.4 is given in Appendix A.2, while that of Lemma 4.5 is
omitted since it follows essentially identical arguments.
4.4 The limit points of (Q%')y>2 load paths whose densities satisfy (W2)

We claim now that all the limit trajectories are supported on the set .#, of measures
with density (v,u) that satisfy the weak formulation associated with (1.2)-(1.3), namely

te[0,T) t€[0,T]

Ly 1= {(WﬁEId(t), wroad(t)) = (v(t, 2)dz, ul(t, x)dx) (v, u) satisfies condition (WQ)}
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Proposition 4.6 (Identification of the limit equations) Let Q. be a limit point of the
sequence (QN )n>2. Then,

Qu(HAy) = 1. (4.8)

To establish Proposition 4.6, we need to demonstrate that each component of the
martingale A4y = MG + Ay, as detailed in (3.5)-(3.6), converges towards its respec-
tive counterpart in the weak formulation (2.7)-(2.8), and then that the martingale itself
vanishes as N — oco. This requires the two Replacement lemmas (Lemma 4.4 and Lemma
4.5), which allow the substitution of terms not expressed through the empirical measure
7y in the martingale .#y, and the identification of the limit sets (Proposition 4.2), that

is essential to define the trace of the function v(¢,-) at the lower boundary.

Proof of Proposition 4.6. Let G € C“*([0,T] x A) and H € C"*([0,T] x T?°1).
For practical reasons, let us define here the functional 7, ,(t) := #5G(t) + #5504 (t)
associated with the weak formulation (2.7)-(2.8) in (W2):

W) = 00, GO — (00, GO, — [ (0(), 0.G5))yds = [ (0(6), dAG(9)), ds
+ [ (9. 00,6 (&) ds = [ ©0]a(). d0,C o) s (49)

— /Ot a (u(s) — vly=o(s), Gly=0(5)) pp-1 ds,

and

W (t) = () H Oy — (o, HO)) gy = [ (), 0 (5)) 1 s
(4.10)

t

_ /Ot (u(s), DALH(S))pp-1 ds — /0 o (v]y=o(s) — u(s), H(S))pp—1 ds.

Given Q,, in the closure of the sequence (Q%')n>2, the statement of Proposition 4.6 can
then be reformulated as

u,v,G

te[0,T] t€[0,T]

Q- ((ﬂﬁeld(zﬁ), (1)) = (v(t, £)d2, u(t, v)dx) WL () = W (t) = o) =1.

To prove this, it is sufficient to establish that of any ¢ € [0, 7] and 6 > 0 there holds
QOOQ%,U(t)\ > 5) — 0. (4.11)

At this point, to work with the probability measures QA" (that do not load paths with
densities) instead of Q., we need to substitute the quantity #,,,(t) with another one
which only depends on measures 79 and 77°* instead of v and uw. This substitution
cannot be made directly because of the boundary terms in (4.9) and (4.10). To overcome
this issue, let us introduce the two families of unit approximations indexed by ¢ > 0,

1

1
22y T Lmeel o]

U = (e Ledr (e

and U™ :=
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defined for all x € TP~! and y € R. Observe that n°¥(?) defined in (4.4) can then be
rewritten for any 2 €e Ty =Ty UL, e >0 and N > 2 as

nEN(Q) = Cne [N field U“p]( /N), if 7 € 'y, (4.12)
and

NN (2) = én e [mh % UPY)(7/N), if 7€ T, (4.13)
where

~ _ (26 N)P~1(eN)
CNe = @ENJ+)P 1 ([eN]+1)

Now for € > 0, 7 = (7", 77*) € M, and t € [0,T], we let #7(t) := W & (t) + W75 (t)
with

for any € > 0 and any N > 2.

W) o= 0, G0) — (79(0), GO) — [ (%(5),0.G(s))ds — [ (7*(s), dAG(s))ds

0

[ (1) U]y, 40, Glyma () ds—/t<[7rﬁ°ld( ) % U|y0. d0,Glymo(s)),  ds (4.14)

Tp—
_/ road G\y of _|_/ ﬁeld Ulow”y 0, Gly=o(s )>TP*1 ds,
and

WEGe(t) = (m(t), H(t)) — (x(0), H(0)) — /t< 4(s), 0 H (s))ds

JO

t t (4.15)
— [[a(s), DAH(s)) ds = [ o ([9(s) « Um0, Hs)),, 1+/ (), H(s)) ds.

Thanks to Proposition 4.2, we know that Q. loads paths with densities (v(t,-))¢co,r in
L2(0,T;HY(A)). As a consequence, the trace of v(t,-) at the boundaries I'™® and T is
well-defined and we have (see [25, Section 5.3])

lir% [ (s) % U] |pcp = Tr(v), Qu-almost-surely in I'.
e—

As a result of this

hm ‘%U - V/f(t)‘ =0, Q..-almost-surely in I'. (4.16)

We can now bound the probability in (4.11) as follows
@w< sup |,,(t) ) @oc<sup Wiualt) = HE(H) + HE (1) >5>
0<t<T 0<t<T

< Qu s [H0l0) - #0)] > 572) + 0u  sup P (0] > o72)

0<t<T

< @m< sup [#oo(t) — Wi (t)| > 5/2) + lim inf @5@'( sup [#5,(t)] > 5/2), (4.17)
N—o0 OStST

0<t<T

where we used the Portmanteau Theorem to write the last inequality. While the vanishing
of the first term in (4.17) as € goes to zero is a straight consequence of (4.16), the second
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one requires further attention. By considering the probability under the limit in this
second term, we control it by this way:

by ( sup [/, (t)] > 5/2): x( sup [W5,(t) — My (t) + My (t)] > 5/2)
0<t<T 0<t<T
< @5@'( sup [W5, () — My (t)] > 5/4) + @5@'( sup |y (t)] > 5/4),
o<t<T 0<t<T
Z;IE“‘ ( sup ’ — My (t )D + Qﬁ(,( sup ‘///N ‘ > 6/4), (4.18)
0<t<T 0<t<T

where we recall that the martingale .#y (¢) is defined in (3.1). In (4.18), the vanishing of
N (|An(t)| > d/4) can be shown by using the Doob’s inequality:

(sup iyt \>5/4> < gE”‘<[%N( ) ) 33 3;(3 [E“‘ (wN +/ B (s)ds )]

0<t<T
16,
= =5 ([ i)

that goes to zero as N — oo — see the control of &y (s) below (3.17). Now we focus on
the remaining expectation in (4.18), and note that the quantity |#; (t) —.#x(t)| can be
bounded by the sum of the following terms

t
sup | [ (xi(s), d(A = &Y + 93)G(s)) + O(1/N) ds|. (4.19)
0<t<T 140
t
field u N
s | ) < U2 0.00,Ga(9), L~ s 3 G ) (420
sup /t<[7r§‘lvcld( ) U™y, d0,Glyo(s)),, — < 3 dOVG(s, &) xn,()ds|, (4.21)
ozier | Jo e Jy=0, Wy ly= Tp—1 Np 1ZeFlow ’
t
field low _
sup. /0 o ([m5(5) % U ly=0. Gly=0($) ), — 570 1; 2y ds|,  (4.22)
sup | [0 (w3 (5), Clymo(s) — G,y (5)) ds (4.23)
o<t<T 1J0 v= U=y ' '
G(s, L) x (b—ny(i))ds|, 4.24
0<t<T /0 Np ;p 7s(0)) ( )
for the “field parts”, and
t
sup / (m(s), D(A, — AY)H(s)) ds|, (4.25)
0<t<T 140
sup /ta<[7rﬁeld( ) * U |,—o H(s)> B > H(s, %) xns(i)ds (4.26)
o<t<T |Jo N € y=0 Tp—1 Np_liel“h’w ’N s ’
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for the “road parts”. To conclude this proof, it remains to argue that all these terms
(4.19)-(4.26) vanish in the limit N — oo then ¢ — 0. First of all, due to the regularity of
the test functions G and H, it is clear that (4.19), (4.23) and (4.25) go to zero as N — oc.
Notice then that (4.24) associated to the upper spawn/kill dynamics is a O(1/N). Lastly,
the vanishing of (4.20)-(4.21)-(4.22)-(4.26) arises from the Replacement lemmas (Lemma
4.4 and Lemma 4.5), the approximation of n=" (i) with the convolution products (4.12)
and (4.13), and the regularity of the test functions G and H. O

5 Uniqueness of the solution

In this last section, we establish the uniqueness of the weak solutions to the Cauchy prob-
lem (1.2)-(1.3) in the sense (W1)-(W2). Our proof relies on testing the weak formulation
(W2) against the solutions (G, H) to a “dual problem” related to (1.2).

Proposition 5.1 (Uniqueness) There exists at most one solution (v,u) to the Cauchy
problem (1.2)-(1.3) in the sense (W1)-(W2).

Proof of Proposition 5.1 (Uniqueness). By linearity it is enough to consider the
case (vg,ug) = (0,0). Given any ¢ € C([0,7] x A) and any ¢ € C°([0,T] x TP~1), we
consider the problem

—0,G — dAG = ¢, te (0,T), zeTrt ye(0,1),
—d0,G| =0 = a(H — Gly=0), te(0,7), zeTP ', y=0,
—0,H — DA H — o(Gly=o — H) = 1, te (0,T), xeTr
0yG|y=0 =0, te(0,7), zeTr ! y=1,
(5.1)
supplemented with final condition
G|t=T = 07 S Tp—l, y e (07 1) ) (5 2)
Hl|—r =0, z e TP, '

By letting (G(t), H(t)) = (G(T —t), H(T —t)), we can notice that the problem (5.1)-(5.2)
is actually a reversed-time field-road system with sources, namely

9,G = dAG + o, te(0,T), zeTr !, ye(0,1),
—df‘ayé\fo :~a(ﬁ —~é’y=0)7~ te(0,T), zeTr!, y=0, 5.3
OH = DALH + a(Gl,—0 — H) + 1, te(0,T), zeTr?

9,Gy=0 = 0, te(0,T), zeTr !, y=1,

provided with trivial initial data. In absence of sources, the solution is explicitly known
through the “field-road heat kernel”, that could be computed as in [3]. By combining
this with the Duhamel principle, see [32, Chapter 4, Section 3] for instance, we obtain
the classical solution to the above problem with sources. As a result, we own G €
CY2([0,T]x A) and H € C*2([0, T] x TP~') that satisfy (5.1)-(5.2), and that are sufficiently
smooth to be tested in the weak formulation (W2). By plugging (G, H) into (2.7) and
(2.8), and then summing the two obtained results, we are left with

/OT (v(s),0(s))y ds + /OT (u(s),(8))ppr ds =0,



An Interacting Particle System towards the Field-Road Diffusion Model 23

that holds for any ¢ € C>°([0,7] x A) and any ¢ € C([0,T] x TP~!). In particular we
have

T
| (w(s).0(s)), ds =0, v € C2([0,T] x A),
0
T (5.4)
/0 (u(s), ¥(5))por ds =0, Vi € C2([0,T] x TP1).
From (5.4), we can deduce that v and u are both identically zero, see [17, Lemma IV.2],
and the proof is therefore completed. O

Appendix

A.1 Some tools and basic estimates

To prove the upper Replacement lemma (Lemma 4.4) and the energy estimate (Lemma,
4.3), we first need to introduce the relative entropy H and the Dirichlet form Dy. These
notions are rather classical and can be found in [34, Appendix 1, Sections 7-8-9-10] for
instance.

For v € (0,1), we denote by vy = v ® v the Bernoulli product measure on Sy
whose marginals are given by

feld[ o~y 1 )Y if e=1, ~

VN,W{UU)—'} —{ 1=~ if e=0, for any 7 € Ay, and
road o . fy lf .:17 . low
V]\M[g(z)_-}_{l_7 if e 0, for any 7 € I'y".

The probability measure vy on Sy offers interesting properties to work with the relative
entropy and the Dirichlet form. Indeed, since vy gives a positive probability to each
configuration (n,&) € Sy, any probability measure puy on Sy is absolutely continuous
with respect to vy. Moreover, the changes of variable of type “flip” or “switch” as done
below are very simple to express when integrating with respect to vy.

For a probability measure pny on Sy, the entropy of py with respect to vy is defined
as the positive value

fERSN

H(juxlvn) = sup { [ £ dun(n.€) =1og | [ 09 du(n.6) }

Since py is absolutely continuous with respect to vy, the entropy can be explicitly written
as [34, Appendix 1, Sections 8, Theorem 8.3]

H(MN!VN)z/SNIOg [?:Z(mé)] dun(n,€) = Y k(0. §)log

e

where dpy /dvy denotes the Radon-Nikodym derivative of p with respect to vy and the
last equality is a consequence of the finiteness of Sy. By decomposing py as a convex
combination of Dirac masses and using the convexity of the entropy, we can show that

H(IUN‘I/N> S CONp, (Al)
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for Cy := —log(min(y,1 —~)) > 0.
Given a function f : Sy — R, the Dirichlet form associated to the dynamics writes

Dn(fivn) = —(Ln S, Flu (A.2)
and may be split following the different parts of Lnx — see (2.1) — into
Dy = N D + N? Dig™ + N D" + Dy + Dy, (A3)

At some points in the proofs of upper Replacement lemma (Lemma 4.4) and the energy
estimate (Lemma 4.3), it becomes essential to control each component of Dy. These
controls are encapsulated in Lemma A.1 below, and require to introduce the functional

Iy = In(f,vn) = N? T84 4 N2 Igd 4 N IR0 4 e 4 130, (A4)

where, for any f: Sy — R,

o) =5 X [ [V - 0] denn.6),
7,ReEAN
|7—R|=1
D 2
L) =5 X [ VI0eR) = 1w g,
i,kelw
li—k|=1

B =a ¥ [ (o) —€0)” [V - Vi8] donn. ).

. 1
[AS Bt

o) i=a $ [ () - €0) (V7€) ~ Vi 6)] st o),

Flow

IN(f,vn) Z/S (1—0)n ){\/fn £) — \/f(n,ﬁ)rdwv(mf),

iely

are all nonnegative.

Lemma A.1 (Control of the Dirichlet forms) For any density function f: Sy — R with
respect to the Bernoulli product measure vy on Sy with parameter v, we have

(D1) For any v € (0,1),

(BT Pl = =R F, o) = —STE9( ) (A.5)

(D2) For any v € (0,1),

LN o Doy = =D/ foow) = —;1153&% f.vw). (A.6)
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(D3) For any v € (0,1),

(EF A P = =D GFow) = =3 I8 (o) + Exlon, ). (AT)

(D4) For any v € (0,1),

L5V T Ao = D5/ Foom) = —2 (o) + Enlnr /). (AS)

(D5) For~y =0,
1
(LA P = =DRO/Fovw) = =5 1R (F.ow). (A.9)
In (D3) and (D4), Enx(a, 7, f) is twice the same quantity, and such that

[En (e, 7, )l < e(y)aNm~. (A.10)

Proof of Lemma A.1, (D1). By writing D% from (A.2) and (2.2), we get

heay TN L -
|7—R|=1
+ 8 [ V@R - I8 [y08) dvta©)
?,QGAN N L -
[7—k|=1

We use then the change of variable 7 := 77‘ # in the second integral. Since the measure
vy is a Bernoulli product measure with constant parameter ~y, this change of variable
remains transparent for vy. We thus have

D)= § \/f<n%ﬁ,5>—¢f<n,s> VI(0.€) dvw(n, )
A;% cAn N .

7—R|=1
d [ roa N
+ 55 [ VIO = Ve o[V i, €) v, €)
dheny o L ]
|7—R|=1
from which follows (A.5). O
Proof of Lemma A.1, (D2). Follow the same method as in the proof of (D1). O

Proof of Lemma A.1, (D3). For clarity, let us introduce the notations

Fi=\/f(n¢§) and  F':=4/f(n¢). (A.11)
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By writing D% from (A.2) and (2.4), we get
~DEM(/fovw) = Z [ (n0) €@ (F* — F)F dvy(n.€)
+ 2 > [ 5 () = €OF* = F)F dvy(,)
i€l " n(i)=0

+5 % [ s i) = E@AF = FF dux(n,€).

iellew “n(i)=1

We then use the change of variable 7 := 1’ in the integral of the second and third line so
that we have

1—7) ifn(i) =0, 1+ 2= if (i) =0,
w(ﬁ,@:w(n,g)x{”/( 1)) L = { T i)

(1 —7)/y if n(i) 1—|—% if n(i) = 1.

This results in

Do e;/S )2 (F' — F)F dvy(n,§)
L ¢ ;/ — £(0)2(F — FYF dvy(n,€)
+ gz [ (S;V1<1 —ij(i) — £(0)*(F — F')F" dv (7}, €)
L@ ;1 QW/SN (1= 77(i) — £(0)*(F — F')F* dvn(1),€)-

Now observe that (1 —n(i) — &(7))? = (n(z) — £(4))? + (1 — 2n(4)) (1 — 2£(4)) and plug this
into the second line above. This directly yields (A.7) with

extenn ) =5 X [ (=201 = 266)(F ~ F)F dv(n.)

1€F‘°W

+% T %/S (1= (i) — £())2(F — F')YF' duy(1,€)
+3 1727/775 (1 —n(i) — £(0)*(F — F')F* dun(n,€),

and the control of Ey (A.10) arises from the Cauchy-Schwarz inequality and the fact that
f is a density with respect to the Bernoulli product measure vy. O]

Proof of Lemma A.1, (D4). Follow the same method as in the proof of (D3). O

Proof of Lemma A.1, (D5). As in the proof of (D3), we employ the notations F' and
F' defined in (A.11). By writing DY from (A.2) and (2.6), we get

“DRTw) =0 X [ (FIF =1 dox(n,) =b S [ o 3F* dv(,)
i€l 77() 0 i€y " n(1)=0

(1-b) Z/ F— 1FY) duy(n,€) — (1—-b) 3 /SN L2 dun(n,€).

i€l 'r]z) 1 i€l “n(i)=1
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We then use the change of variable 7 := n® in the second and fourth integrals above so

that we have
v/(1—=7) ifn(i) =0,
1,

vn(7,€§) = v (1, €) x { (1 —=7)/y if n()

resulting in

_DHNP([ foon)=b Z /SN F2) dvn(n,§&) — (1= V Z /SN % dVN(U £)

iel'y “n(i)=0 i€l “n(i)=1

+(1-0) > /SN (F'F — LF?) dyN(mf)—% 3 /SN LOF)? duy (7, €).

i€l “n(i)=1 i€lY " n(i)=0

By choosing v = b, we get

Do) =5 X [ (B 2E ) )

1€l “n(i)=0

1gb Z/SN (F2_2F1F+(FZ))dVN(TI §)

i€l “n(i)=1

= [ + (L= b)) (F' = F)" dun(n,6),

zel"“p

that is (A.9). O

We also need some useful inequalities that are gathered in the following lemma.

Lemma A.2 (Useful inequalities)

(I1) For any sequence of positive numbers (ay) and (by), we have

1 1 1
lim sup N log(ay + by) < max <lim SUp log(ay), lim sup N log(bN)> :

N—oo N—oo N—o0

(I2) For any z € R we have el*l < e* +e72,
(I3) For any X,Y € R and any B > 0, we have XY < J-X? + ZY2.
(I4) For any X,Y € R, we have % < X7+ Y2

A.2 Proof of the upper Replacement lemma

Proof of Lemma 4.4 (Replacement at the upper boundary). Consider the term
under the integral in (4.6), namely

AvelGs, D)m) = oy 3 Gl ) [N (2) — (D). (A.12)

ZEFUP
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We develop 7V (%) in (A.12) with (4.4) and express that 7 + &, with # = (k, (), browses
A%N . This yields

A N-1 cw, N R R .
Ave(G(s, H)m) = X2 > =Y Gls ) (2 4+ R) = me(D)]
ke[—[eN],[eN]]P~! £=[N—-1—eN] fherw

n (A.13), focus on

> Gl bm+) = X |66 5 - 6 BE

7ery 7eryy 7ery

(A.14)

Since G € C2([0,T] x A), the Mean Value Theorem allows to control, in the first sum of
(A.14),

/\

G(s, &) — Gls, TR)) < pe sup VG (s, )l (o (A1)

s€[0,T]

For the second sum in (A.14), notice that we have, thanks to the periodicity of the torus
Ty and the Mean Value Theorem,

/\/\

Y Gls, BE (0 +8) = DY G(s,5FE )ns(i + &, 0)
ZEF“I zeTp 1
- Z G % % 773(2 ﬁ)
zGTp !
) N-—-1—-Y/ }
= Y |G(s, £, M) + N Ci(G,N)| ns(i, £), (A.16)
i€TR

where there is y € (0, 1) such that
GG V)| = 10,Gs. )] < sup VG5, ) 1qn. (A7)

s€[0,T

Now using (A.14) and (A.16) into the expression of Ay, in (A.13), we obtain

AN,E(G(3> %)7 775) =

N-1

CN.e A A A N N
2 NJZ7—1 {G(&%)—G(S, L) 5@+ R) (A.18)
ke[-[eN],[eN]]P~! £=[N-1-eN] feryy
Nl CNe N—-1-—¢ ,
" 2 2 N];/Ll > —— GG N)n(i, ) (A.19)
ke[—[eNT,[eN]JP~! (=[N—1-¢N] ierr!
N-1
CNe i _ . .
+ > Y oS X G S0 N =1 (A20)
k€[=[eNT,[eN]P~ £=[N—1-cN] ze’]l"’ !
Therefore we have
ey || [ vt X Gl [ ) =) ds] <
FUD
t t
B4 / (A18) ds|| + B || [ (A19) ds| | + B4 || [ (A.20)ds||. (A21)
0 0 0
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n (A.21), the vanishing of the two first expectations is a straight consequence of the
controls (A.15) and (A.17). Indeed, for the first expectation in (A.21), we have

t
E% / (A.18) ds
0
o ! = CNe 2 T4k
el [ % S ey |G b - 6 B 4 #) ds
ke[—[eN],[eN])P~! £=[N—1-eN] rerw
N e ? Dih
</ Y oS X (Gl g) - Gls )| ds
~[eN1, fanp 1 4=[N-T-eN] rere
control this with (A.15)
N-1
< Tpe sup [[VG(s,+)||Lee(n) X > > enveX g 21
s€l0.7] ke[~[eNT,[eN]|P~" ¢=[N—1-eN] ferwy
=1 =1
=Tpe sup [[VG(s,-)||rea)
s€[0,7T
that vanishes as ¢ — 0. Similarly,
t
B ‘ / (A.19) ds
0
<e
N-l CN N-—-1-/
= EL 3 3 NP)*l > N C1(G, N)ns(i,0) ds]
ke[—[eNT,[eN1]P~! £=[N—-1-eN] i€T? !
N-1 Cne
<Te Z Z N1 |C1(G, N)|
ke[=[eNT],[eN]P~" =[N—1-eN] tery control this with (A.17)
<Te sup |[|[VG(s,+)||L=(n)
s€[0,T

that also vanishes as ¢ — 0. The last expectation outlined in (A.21), namely

t
E% /0 (A.20) ds]
10 ¢ = CNE i N—1 . .
= BN /o 2 2 Y Gs 5 M) (i, 0) — (i, N = 1)] ds| | (A.22)
ke[—[eN],[eN]]P~L EZ(NflfsN} 16’]1"’ 1

captures key information about the y-direction of 7, in the region A%N . The vanishing of
this expectation is actually the core of this proof.

Given any fixed a > 0 (which will eventually be increased to +00), we use the entropy
inequality (see [34, Appendix 1, Section 8]) on (A.22). This yields

)

Thanks to the control we have on H(uy|vy), as outlined in (A.1), the second term in
(A.23) is bounded by Cy/a that vanishes when a — oco. Therefore, to conclude the proof,

EY <t /t(AQO)ds +LH( vy). (A.23)
N = NP g 0 . NP UNIVN - .

/ "(A.20) ds

EY {exp (aNp
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it is enough to show that, for any a > 0,

/0 "(A.20) ds

L 1
ll—r}(l) ]\}larnoo alNP log

EY lexp <aN P

)]

Now, we remark that we can get rid of the absolute value into the exponential of this last
expression. Indeed, by combining (I2) and (I1) in Lemma A.2 with

t
z= aNp/ (A.20) ds, a, = EY(e), and b, = EX (e77),
0

we have

1 1 1
lim sup NP log <]E]’(,‘ (e‘z‘)> < max [lim sup o log (]Eﬁ’\,‘(ez)) , lim sup NP log (E]”V‘(e_z))] ,

N—oco Q@ N—oco @ N—oco @

and therefore (up to take —G instead of GG) we only have to prove the vanishing of

EY [exp (aNp/Ot (A.20) ds) ” .

We use now the Feynman-Kac’s inequality — see [4, Lemma 7.3 in Appendix] — with
the operator Ly + aN?V (s,-) where

1 ver oo\ 1
105 (BX () = o g

N-1
CN,e i _ . .
V(Sv ') N Z Z Np—1 Z G(87 N> %) [7](27 g) - 77(17 N — 1)] . (A24)
ke[—[eN],[eN]P~! £{=[N—-1-eN] iET’;\fl

With the variational formula (Rayleigh quotient) for the largest (principal) eigenvalue of
the operator Ly + aN?V (s,-), we are led to

1
alNP

log <

EX [exp <aNp /0 " (A.20) ds) ]

/Ot sup {/SNV(s,n)f(mé)dyN(n,i)Jra]l\,p(EN\/?,\/?M} ds.  (A.25)

f density
with respect
to vy

Now focus on the integral term into the supremum in (A.25). By using a telescopic sum
to write the differences n(i,¢) — n(i, N — 1) in V(s,n) as defined in (A.24), we get

[ Vi) £0.6) dun(n€) =

N
- CN,e i N-1
Z Np-1 Z G(37 N T)
k€[~[eN],[eN]P~! {=[N—1—eN] ieTB !

x Z [, G, m) = n.m + 1)) £0.€) dvn(n,). (420
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In (A.26), we focus on

/SN (i, m) = ni,m+ )] f(n,6) dvx(n, &) =
/SN n(i,m) f(n,€) dvn(n,§) —/S 0l m+1) f(n,€) dun(n,€).  (A.27)

N

In the first integral in (A.27), we perform the change of variable

77 '_) n(irm)v(i7m+l) = 777%0,7?31'

This gives
[ ot m) = nGi.m + )] £(0.6) don(n.€)
= [ a0 [ €) = 103 €)] v .6

e WT VI ] 706 + 7. €)] o),

use (I3) at this point

<z / (* [h NITeY; ]dVNné (A.28)
tor [ ik, ) Vi) + 1 }duan (A.29)

where B > 0 is to be determined later in this proof. In (A.29) we now use (I4) and the
fact that f is a density with respect to vy to write

[ [ni.m) = nti.m o+ 1) (0.6) dvx(n.€)

<f 0 [\/ \/T] don(n,€) +=.  (A.30)

Incorporating (A.30) into (A.26) yields

/SN V(s,n) f(n,§) dvn(n,§)
< X Y e S G b

ke[~[eNT,[eN]P Z:[N_l_am lGTP '

- ZE::z []23 /SN n(fr) [m _ \/%]2 dvy(n,§) + é]
2Np 9NP-1 Z Z/ {\/T \/T} dvn(n. ¢ 2;]\[

ETP 1 m=0

<G (55 )y

(A.31)

where we used that > cy. =1, 375 > 1 =1, and
k7 ;

N—-1—-(<eN forallle[[N—-1—-eN|;N —1].
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Now observe that we can make the Dirichlet form D% appear in (A.31) thanks to (D1).
This results in

2B %N
/SN V(s,n) f(n,€) dvn(n,€) < |G(s,+)| o= (a) [del D/ foow) + gB} (A.32)

By gathering (A.23), (A.25) and (A.32), we obtain

'/Ot (A.20) ds }

‘ °B . 2:N
< [ (160l [ D8 o)+ ZX] + L nFoy ) s+

with respect
to vy

t 2BIG G M= 1] e /7 2N IG5, sy
su _ elc
S /() |: f den}zity { |: dNpr-1 aNpP—2 ]D)N (\/?7 VN) + B

with respect
to vy

125
Ex

ds + Co+ ZC(b)oz7
a

(A.33)

where we used the whole Lemma A.1 (with v = b) and the fact that —3I%, —1I3,
—%I}\?“ and —%I]%Ob are nonpositive to provide the last inequality. At this point, we make
the choice B := dN/(2a||G(s,-)||z=(a)) to cancel the supremum in (A.33), so that we are

left with
t
‘ / (A.20) ds
0

By letting ¢ — 0 and then @ — oo, we finally get the vanishing of EX'[| i (A.20) ds|] which,
combined with those of EXY[| i (A.18) ds|] and EX'[| fa (A.19) ds|] in (A.21), completes this
proof. O]

ATea Co + 2¢(b)a
< sup [|G(s, )Toopy + —

d s€[0,T] a

B (A.34)

A.3 Proof of the energy estimate

Proof of Lemma 4.3 (Energy estimate). For ¢ € [1;p], G € C**([0,T] x A) and
v € L*(0,T; L*(A)), let us write the quantity below the temporal integral in (4.2) as

Ja(s) = Ja(s,0,0) = (0(),8,6()),, ~ 3 1G() e

Now consider an enumerate sequence (G, )nen dense in C%2([0,7] x A), and observe that
it is sufficient to show that there is a constant C' > 0 such that for any ny € N, we have

e s, { [ o))
where E,, denotes the expectation with respect to Q.. Since the maps
T 1
(mx (o > [ ((T8(5), 00, Gul5)) = 51G()aqny ) s

are continuous with respect to the Skorokhod topology, and since the probability Q.. is
in the weak closure of (Q)')n>2, then the expectation in (A.35) can be recast

<C, (A.35)

i 25| e { [ (00,0606 = 5160 a5}

N—oo 0<n<ng
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that is, by explaining the empirical measure 7h'd(s),

N—oo

_ T/ A 1
MnEﬁlgﬁ%{A (Np;;aﬁ%@w@xm@y—ﬂmmgmﬂM)@H (A.36)
1TEAN

= JY (sm.q) = IY (s).

For a fixed a > 0, we use the entropy inequality (see [34, Appendix 1, Section 8]) to bound
the expectation in (A.36) with

5 | s, { [ 20

<Llo EY | ex (apr max {/TJN (S)ds}) + ! 7‘[( ’V) (A.37)
= oy BN | P 0gn<ne | Jo " ane F\HINIEN ) )

Thanks to the control we have on H(uy|vn), as outlined in (A.1), the second term in
(A.37) is bounded by Cj/a and does not pose a significant issue while a remains far from
0. Now focusing on the first term in (A.37), notice that

T o T
EX [exp (aNp x max {/0 J& (s) ds})] < EY [Z exp (aNp/O J& (s) ds)}

n=0

= g]E]”V‘ [exp <aNp /OT J& (s) ds)].

This control allows to bootstrap (I1) (cf. Lemma A.2), providing

1 T
. o N
hjry_}s;p {aN log (IEN [exp <aN x max {/0 Ja, (s) ds})])}

- P
< pmax hzr\?jo%p {aN log <E [exp (aN / J& (s ds)}) } . (A.38)

Working on the term between the bracket in (A.38), we use the Feynman-Kac’s inequality
— see [4] (Lemma 7.3 in Appendix) — with the operator Ly 4+ aN? J& (s,-,¢). By using
the variational formula (Rayleigh quotient) for the largest (principal) eigenvalue of this
operator, we are led to

a]l\fp (E]'(,‘ {exp (aNp X /OT JE (s) ds)])
gTwDU(MZn%G%memf%—m[f}@Aw

0 f density
1 /T 9
=5 [ N1Gn(8) 72 ds
2 Jo

with respect
to vy

Considering the integral term into the supremum in (A.39), the regularity of G enables

to write

1 A
maqun(S, %) =
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so that

/( Zn NN ﬁ))f(m&)dmv(n,f)

_ /SN (5 22 00 (Gl 5 = Gl 1)) ) 70, de(.) + 0 (1),

Using then a summation by part (mind the compact support of G) and the change of
variable i — n%%¢ we obtain

[ (5 3 0000,Gats D) 0. din(1,) = ox)

= Ni_l > [, (@) Gals, Y (F.€) = £ 1#00.€)) dun(n,€)
AGAN N
= er’—lAE /SN n(%) Gu(s, L) [\/ nii+en €) —/f(n, ¢ ] {\/f(n?’“%,ﬁ) + \/f(n,ﬁ)} dvn (1, )
rehy use (I3) at this point
2
< X5 oo [VI 6 = 706 dvwiag) (A.40)
/Z\EAN N

+ b o5 (G 00) [ o) [V + 6] a0, (A1)

where B > 0 is to be determined later in this proof. In (A.41) we use now (I4) and the
fact that f is a density with respect to vy to write

/ (Np Z 1(2)8e,Gn(s %)) f(n,8) dvn(n,€) — ox(1)

<o X5 [ {m—m S+ 3 5 (Gt D))
iey ! 7eAN
A 2
= d]%fle%ld(\/? BNp BNv—1 Z ( %) ; (A.42)

where we used (D1) to provide (A.42). By gathering (A.37), (A.39) and (A.42), we obtain

s { [ 0]
T 2B . 1
= /0 f(?(glrs)ity {delD?Vld(\/}a vN) + NP <»CN\/}, ﬁ)w} ds

with respect

to vy
AN\ 2 1 C
+/ <BNP 1 Z <G”(3’ J%/)> - 2||Gn(3)||?:2(/\)> ds + ;0 + on(1)
! 25 1 field
S/o fgils)ity {[de—1 o aNP—Q} Dy (\/}, VN)} ds (A.43)
Wit}tl respect
! 2 Y L Co + c(b)a
+/0 (BNpl AZA (Gn(s’ ]%/')> B 2||Gn<8)||%2(A)> ds + Oa) + on(1),
1EAN
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where we used Lemma A.1 to provide the last inequality. At this point, we make the
choice B := dN/2a to cancel the supremum in (A.43), so that we are left with

T
B [m ([ )

A\ 2 1
<[ (a9 (66 D) = 3160l s+

We take now a := d/4 to face the norm with the Riemann sum in (A.44), this results in

T 4Cy + 4c(b
e s { [ | < 0 o

It remains to let N — oo to eventually reach (A.35) with C' := (4Cy + 4c(b)ar)/d. This
completes the proof. O

C‘)Jr:(bm +ox(l). (Ad4)

Table of Notations

Notation | Description

p Dimension of the field (the road is (p — 1)-dimensional)
T One-dimensional torus R/Z
P! Macroscopic road
A Macroscopic field TP~ x (0,1)
A Closure of A
r Macroscopic frontier of the field 9A = TP~ x {0,1}
e Macroscopic upper boundary of the field
[low Macroscopic lower boundary of the field
N Size of the microscopic particle system
Ty One-dimensional discrete torus Z/NZ
T Microscopic road

Ay Microscopic field Ty x [1; N — 1]
I'n Microscopic frontier of the field Ay = Ty x {0,1}

'y Microscopic upper boundary of the field
o Microscopic lower boundary of the field

I
N~
= \.N.
\.N <

Microscopic point on Ay (i € Ty and j € [1; N —1])

Alternative microscopic point on Ay if needed

> ] "D <>

z,y) | Macroscopic point on A (z € T and y € (0,1))
w)

Alternative macroscopic point on A if needed

ey q'" canonical vector of R? (1 < ¢ < p)
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(n,€) State of the system (n for the field and & for the road)
Sheld State space for the field {0, 1}~ 37
S State space for the road {0, 1}'%" 3 ¢
SN Whole state space Sid x Siead
i4(n) | Empirical measure on S& associated with 7
w94 (€) | Empirical measure on Si*® associated with £
mn(n,€) | Empirical measure on Sy associated with (7, §)
Ml Set of positive measures on Si' bounded by 1
Mrad 1 Set of positive measures on S3*! bounded by 1
M Cartesian product Mfeld x Afroad
T Time horizon
d,D Diffusion coefficients
Q Exchange coefficient
b Birth rate at the upper boundary
vy Parameter of the Bernoulli product measures
PAY Probability measure on Sy induced by px and (n, &)icpon
N Probability measure on M induced by Py and 7y
Q. A point in the closure of (QN')n>2
Ey Expectation with respect to Py
D Expectation with respect to PA"
EY Expectation with respect to Py
E. Expectation with respect to Q.
A Laplacian operator for the field
A, Laplacian operator for the road
AN Discrete Laplacian operator for the road
65; Discrete Laplacian operator in the y-direction
\Y% Gradient operator for the field
AVA Gradient operator for the road
Tr Trace operator
G Test functions for the field
H Test functions for the road
Ifigd Bulk field part of the generator
Iz%ad Bulk road part of the generator
LR Robin exchange part of the generator

reac
L N

Reaction exchange part of the generator
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Ly Upper reservoir part of the generator
Dy Dirichlet form
Dfictd Bulk field part of the Dirichlet form
Drgad Bulk road part of the Dirichlet form
DReP Robin exchange part of the Dirichlet form
Dy Reaction exchange part of the Dirichlet form
DY Upper reservoir part of the Dirichlet form

H(ulv) | Relative entropy of p with respect to v

AMn(t) | The Martingale

AMNE(t) | Field part of the Martingale .y (t)

A% (t) | Road part of the Martingale ./ (t)
N (t) | Quadratic variation of .Z3E(t)

A% (t) | Quadratic variation of .35 (t)

BNG(t) | “B’-part of the martingale A ()

B (t) | “B”-part of the martingale A% (t)
S Set of measures whose densities satisfy (W1) and (W2)
B2 Set of measures whose densities satisfy (W1)
B2 Set of measures whose densities satisfy (W2)

W.s(t) | Functional of the weak formulation %, = 7, &" + #, %"
w&'(t) | Functional of the weak formulation in the field

W5 (t) | Functional of the weak formulation on the road
U Upper unit approximation
Ulow Upper unit approximation
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