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Abstract

We consider the solution to the scalar Fisher-KPP equation with front-like initial data,
focusing on the location of its level sets at large times, particularly their deviation from
points moving at the known spreading speed. We consider an intermediate case for the
tail of the initial data, where the decay rate approaches, up to a polynomial term, that of
the traveling wave with minimal speed. This approach enables us to capture deviations
of the form −r ln t with r < 3

2 , which corresponds to a logarithmic delay when 0 < r < 3
2

and a logarithmic advance when r < 0. The critical case r = 3
2 is also studied, reveal-

ing an extra O(ln ln t) term. Our arguments involve the construction of new sub- and
super-solutions based on preliminary formal computations on the equation with a mov-
ing Dirichlet condition. Finally, convergence to the traveling wave with minimal speed is
addressed.
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1 Introduction

This work is concerned with the large-time behavior of u = u(t, x), the solution to the Fisher-
KPP equation

∂tu = ∂xxu+ u(1− u), t > 0, x ∈ R, (1.1)

starting from a front-like initial data u0 such that (see below for a precise statement)

u0(x) “behaves like” xke−x as x→ +∞, for some k ≥ −2. (1.2)

As previously established, the level sets of the solution asymptotically move (as t → +∞)
at a constant spreading speed, often denoted by c∗, which is also the minimal traveling wave
speed. However, it is expected that the precise location of the level sets deviates slightly from
the moving frame associated with this spreading speed. Through PDE techniques, we capture
this (logarithmic) correction and, while the solution approaches a family of shifted minimal
traveling waves, we find that it may either lag behind (when −2 ≤ k < 1) or slightly outpace
(when k > 1) the moving frame with the exact speed c∗.

It is a well-established [4], [26] that, for large classes of front-like initial data (e.g. com-
pactly supported or exponentially decaying as x → +∞), the solution of the Fisher-KPP
equation (1.1) spreads with some speed c ≥ c∗ = 2, in the sense that

min
x≤c1t

u(t, x)→ 1 as t→ +∞ if c1 < c, max
x≥c2t

u(t, x)→ 0 as t→ +∞ if c2 > c. (1.3)

The steepness of the right tail of the initial data significantly influences the position of the level
sets. In particular, if the initial data has a “heavy tail”, meaning it decays more slowly than
any exponential as x→ +∞, then the spreading speed is infinite and acceleration occurs [20].

Furthermore, in the case of exponential decay, and using a similar terminology to that
of [28], one should distinguish between the flat case

u0(x) “behaves like” e−λx as x→ +∞, for some λ < 1,

and the sufficiently steep case

u0(x) “behaves like” e−λx as x→ +∞, for some λ > 1.

In the flat case, the spreading speed is given by the dispersion relation c = λ2+1
λ > c∗ =

2, and there is no logarithmic correction. Specifically, the position of any level set of the
solution behaves as ct +O(1) as t → +∞. We refer to [26], [27] for even stronger results on
the convergence to a traveling wave. On the other hand, in the sufficiently steep case, the
spreading speed is c = c∗ = 2, but the position of any level set of the solution behaves as
2t − 3

2 ln t + O(1) as t → +∞, indicating a logarithmic delay. This was first known through
probabilistic arguments [11, 12], and is commonly referred to as the logarithmic Bramson
correction. As a result, the solution converges in the appropriate moving frame to the traveling
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wave with minimal speed. This convergence can also be proved by other methods, e.g. based
on an extended maximum principle related to the nonincrease of the number of intersection
points between any two solutions of the Cauchy problem [22, 23]. Additionally, let us mention
[13], [14], [28] for an analysis of such correction terms through convincing formal asymptotic
expansions.

More recently, logarithmic corrections have been revisited through PDE techniques by
Hamel, Nolen, Roquejoffre, and Ryzhik. In [19], they consider the case where u0 ≡ 0 on a
neighbourhood of +∞ (roughly corresponding to λ = +∞). However, a careful analysis of
their proof reveals that it also applies to the case where(

x 7→ xexu0(x)
)
∈ L1(0,+∞),

which, in particular, includes the sufficiently steep case. Further refinements, including the
convergence rate, have then been developed by some of the same authors [24, 25]. In the same
PDE framework, the connection between logarithmic corrections and the nature of waves
(pushed vs. pulled) was explored in [16], [2, 3]. Additionally, the effect of nonlocal terms or
discrete diffusion has recently drawn significant attention [9], [17], [10], [7]. Let us also mention
the work [8] which shows that the delay can be increased by considering a logarithmic singular
nonlinearity.

Our goal here is to investigate the intermediate case (1.2). The fact that the solution
spreads with speed 2, in the sense that (1.3) holds with c = c∗ = 2, follows directly from the
previously mentioned results and the parabolic comparison principle, see also the insightful
introduction in [18]. However, we will further prove, through PDE techniques akin to those
in the aforementioned works, that such special initial conditions also lead to convergence to
a traveling wave with a logarithmic correction, but with a prefactor depending (in value and
sign) on k > −2. The critical case k = −2 will be tackled separately, as the position of the
level sets in this case involves an extra term of order ln ln t.

Through this work, unless otherwise specified, we always denote by u = u(t, x) the solution
of (1.1) with initial condition u0 satisfying the following assumption.

Assumption 1.1 (Initial condition). The function u0 : R → [0, 1] is uniformly continuous,
positive, satisfies lim infx→−∞ u0(x) > 0 and there are k ≥ −2, 0 < a ≤ A such that

axke−x ≤ u0(x) ≤ Axke−x, ∀x > 1. (1.4)

Notice that, by applying this assumption and the comparison principle, we immediately
obtain 0 < u(t, x) < 1 for all (t, x) ∈ (0,+∞)× R.

To state our results, we denote U the traveling wave with minimal speed (or simply minimal
traveling wave) of (1.1), which satisfies the following conditions:{

U ′′ + 2U ′ + U(1− U) = 0 on R,
U(−∞) = 1, U(+∞) = 0, U ′ < 0.

(1.5)

In particular U(x− 2t) solves (1.1). The existence and uniqueness (up to translation) of such
a traveling wave were established in [15], [22], [4]. It is also known that

U(x) ∼ Bxe−x, as x→ +∞,
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for some B > 0. In this context, when k = 1, respectively k < 1, respectively k > 1,
Assumption 1.1 means that the right tail of the initial data roughly behaves like, is lighter
than, or is heavier than that of the minimal traveling wave, respectively.

Our main result for the noncritical case k > −2 is as follows.

Theorem 1.2 (Bramson correction when k > −2). Let u = u(t, x) be the solution of (1.1)
with initial data u0 satisfying Assumption 1.1 with k > −2. Define

r :=
1− k

2
<

3

2
.

Then, there exists a constant C ≥ 0 such that

lim
t→+∞

inf
|h|≤C

∥∥∥u(t, ·)− U(· − 2t+ r ln t+ h)
∥∥∥
L∞(0,+∞)

= 0. (1.6)

Most of the proof will be devoted to analyzing the position of the level sets, from which
the convergence part largely follows by a Liouville-type result as in [19]. More precisely, we
will prove that, for any 0 < m < 1, there are Cm, Tm > 0 such that

Em(t) ⊂
(

2t− r ln t− Cm, 2t− r ln t+ Cm

)
, for all t ≥ Tm,

where
Em(t) := {x ∈ R : u(t, x) = m} (1.7)

denotes the m-level set of u(t, ·) which, at least for large enough times, is not empty. As
established in the aforementioned literature, the spreading result (1.3) holds with c = c∗ = 2.

Let us briefly discuss the conclusions of Theorem 1.2.

• For the case k > 1, the Bramson correction implies that the precise location of the front
of the solution moves faster than x = 2t. Therefore, we call it the advance case.

• Conversely, if −2 < k < 1, the Bramson correction implies that the precise location of
the front of the solution moves slower than x = 2t. Hence, we refer to this as the delay
case.

• When k = 1, there is no logarithmic deviation, which is consistent with the observation
that, in this case, the right tail of the initial data is “comparable” to that of the traveling
wave.

As for the critical case k = −2, we find that r = 1−k
2 = 3

2 . In this scenario, however, the
drift is not expected to follow a purely logarithmic form. Instead, we provide the following
result regarding the large-time asymptotics of the solution, which includes an extra O(ln ln t)
term.

Theorem 1.3 (The critical case k = −2). Let u = u(t, x) be the solution to (1.1) starting
from u0 satisfying Assumption 1.1 with k = −2.

Then, there exists a constant C ≥ 0 such that

lim
t→+∞

inf
|h|≤C

∥∥∥u(t, ·)− U
(
· −2t+

3

2
ln t− ln ln t+ h

)∥∥∥
L∞(0,+∞)

= 0. (1.8)

We refer to the work [6], based on probabilistic arguments, for refined results in the critical
case (but when the problem is instead posed on a moving half-line with a Dirichlet boundary
condition). Let us also refer to the comprehensive work [14] which primarily utilizes formal
asymptotic expansions. In contrast, our approach is distinct and relies on PDE techniques.
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Outline of the paper. The organization of this work is as follows. In Section 2 we present
some formal computations that are crucial to “guess” the shape of the solution, and provide
material to construct sharp sub- and super-solutions. Building on these computations, we
obtain the upper estimate on the level sets for the case k > −2 in Section 3 and the lower
estimate in Section 4. The position of the level sets in the critical case k = −2 is studied in
Section 5, using a similar but slightly different ansatz satisfying a moving Dirichlet boundary
condition. Last, the convergence to the profile of the minimal traveling wave is addressed in
Section 6.

2 Enlightening formal computations

The computations presented here are the keystone for constructing sharp sub- and super-
solutions in the subsequent sections.

Computations involving the minimal wave. Denote as U the minimal Fisher-KPP
wave, i.e. the (unique up to shifts) solution of (1.5). Then, defining v(t, x) := U (x− 2t+ r ln(t+ t0))
with t0 > 0, we immediately compute

Lv := ∂tv − ∂xxv − v(1− v) =
r

t+ t0
U ′ (x− 2t+ r ln(t+ t0)) .

When r > 0 (i.e. k = 1− 2r < 1), then v acts as a sub-solution of (1.1). However, due to the
asymptotics U(x) ∼ xe−x as x → +∞, it follows that for any t ≥ 0 that v(t, x) > u0(x) on
some right half-line. Conversely, when r < 0 (i.e. k > 1), then v acts as a super-solution, but
v(t, x) becomes smaller than u0(x) for large x. Consequently, in both cases, the comparison
principle seems inapplicable.

Lemma 2.1. Let U be the minimal traveling wave and let t0 > 0 be given.
If k ≥ 1, then U(x− 2t+ r ln(t+ t0)) is a super-solution of (1.1) on [0,+∞)× R.
If k ≤ 1, then U(x− 2t+ r ln(t+ t0)) is a sub-solution of (1.1) on [0,+∞)× R.

This indicates that the traveling wave may serve in the so-called front zone x ≤ 2t+O(
√
t).

However, a different tool is required in the so-called far away zone x ≥ 2t + O(
√
t). To do

so, we work in the moving frame as in the seminal work [19], see also [16], leading us to an
ODE problem. In contrast with previous literature, the adequate solution is determined by
the choice of k > −2 in (1.4), which serves as a good starting point for constructing a relevant
ansatz.

Computations in the moving frame. Following the idea from [19], we start from the
linearized equation of (1.1) at u ≈ 0,

∂tu = ∂xxu+ u.

By changing the variable
z = x− (2t− r ln(t+ t0)),

we reach
∂tu = ∂zzu+

(
2− r

t+ t0

)
∂zu+ u.
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Letting
v(t, z) := ezu(t, z),

we get
∂tv = ∂zzv +

r

t+ t0
(v − ∂zv).

Using the self-similar variables

τ = ln(t+ t0)− ln t0, y =
z√
t+ t0

,

we reach

∂τv = ∂yyv +
y

2
∂yv + rv − r√

t0
e−

τ
2 ∂yv

≈ ∂yyv +
y

2
∂yv + rv,

by formally ignoring the non-autonomous exponentially decreasing drift term. Plugging the
ansatz

v(τ, y) = e
τ
2w(y),

with w(0) = 0 and w′(0) = 1 (which can be motivated by a matching argument with the
traveling wave), we are left to solve the Cauchy problem{

w′′ + y
2w
′ +
(
r − 1

2

)
w = 0,

w(0) = 0, w′(0) = 1.

Lemma 2.2. The solution w of the Cauchy problem
w′′ + y

2w
′ +
(
r − 1

2

)
w = 0, y > 0,

w(0) = 0,

w′(0) = 1,

(2.1)

satisfies the following properties:

(i) if r = 3
2 , then w(y) = ye−y

2/4;

(ii) if r < 3
2 , then w > 0 in (0,+∞), limy→+∞

w′

w (y) = 0 and there exists C > 0 such that

w(y) ∼ Cyk as y → +∞, k = 1− 2r. (2.2)

Proof. The case r = 3
2 is obvious as one may directly check that ye−y2/4 indeed satisfies the

wanted problem. When r < 3
2 , we may write w(y) = yϕ(y) where
ϕ′′ +

(
y
2 + 2

y

)
ϕ′ + rϕ = 0, y > 0,

ϕ(0) = 1,

ϕ′(0) = 0.

Notice that, using a Sturm-Liouville approach, one can recast the above ODE problem into
an integral equation and prove the existence and uniqueness of a local solution which satisfies
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ϕ′′(0) = − r
3 , see [21, Proposition 3.1]. Next, by writing ϕ(y) = e−

y2

4 ψ(y
2

4 ), we see that ψ
satisfies 

zψ′′ +
(
3
2 − z

)
ψ′ +

(
r − 3

2

)
ψ = 0, z > 0,

ψ(0) = 1,

ψ′(0) = 1− 2r
3 .

Then ψ(z) = 1F1

(
3−2r
2 , 32 , z

)
, where 1F1(a, b, z) denotes the confluent hypergeometric function

of the first kind, or Kummer’s function [1]. According to [1, formula 13.1.4], for a not a
nonpositive integer, we have

1F1(a, b, z) ∼
Γ(b)

Γ(a)

ez

zb−a
, as z → +∞,

which, applied to w(y) = ye−
y2

4 ψ
(
y2

4

)
, exactly corresponds to (2.2). Additionally, from [1,

formula 13.4.14], we have

√
z

(
d
dz 1F1(a, b, z)

1F1(a, b, z)
− 1

)
→ 0, as z → +∞,

which implies w′(y)
w(y) → 0 as y → +∞. Lastly, since a = 3−2r

2 > 0, b = 3
2 , it follows from [1,

formula 13.1.2] that ψ is positive on (0,+∞) and so is w.

Observe that, returning to u = u(t, z), we have

u(t, z) = e−z
√
t+ t0
t0

w

(
z√
t+ t0

)
,

so that not only the asymptotic behavior (2.2) ensures that

u(0, z) ∼ C

t
k/2
0

zke−z, as z → +∞,

which matches with the spatial decay of the initial data as stated in Assumption 1.1, but also
ensures

u(t, z) ∼ 1√
t0
ze−z, as t→ +∞,

which matches with the asymptotics of the minimal traveling wave. This suggests that this
ansatz may serve effectively as either a sub-solution or a super-solution.
Remark 2.3. Incorporating the nonlinear and non-autonomous terms that were previously
ignored in the formal computation, the proposed ansatz, unfortunately, fails to generate either
a valid sub-solution or super-solution. To overcome this issue, we will consider a slightly
different approach, introducing a logarithmic drift different from the expected one. More
precisely, taking r′ > 0 and letting instead z = x− (2t− r′ ln(t+ t0)) and

v(τ, y) = e(r
′−r)τe

τ
2w(y)

in the above computation, we observe that w still satisfies the ODE (2.1). Thanks to this
additional parameter r′, the resulting alternative ansatz now satisfies a Dirichlet boundary
condition at x = 2t+r′ ln(t+ t0), and still exhibits similar asymptotic behavior. However, the
inclusion of r′ proves to be more convenient to construct sub- and super-solutions of (1.1).
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3 The upper estimate

This section focuses on establishing the upper estimate for the position of the m-level set Em
of the solution, as defined in (1.7).

Proposition 3.1 (Upper estimate). Let u = u(t, x) be the solution to (1.1) starting from u0
satisfying Assumption 1.1 with k > −2. Let m ∈ (0, 1) be given. Then, there are Cm > 0 and
Tm > 0 such that

Em(t) ⊂ (−∞, 2t− r ln t+ Cm), ∀t ≥ Tm, (3.1)

with
r =

1− k
2

<
3

2
.

Moreover, there are k1 > 0 and σ1 > 0 such that

u(t, 2t− r ln t+ y) ≤ k1(y + 1)e−y for any t ≥ 1, 0 ≤ y ≤ σ1
√
t. (3.2)

3.1 Proof of Proposition 3.1

To construct an appropriate ansatz for the solution, we begin by considering the form derived
from the formal computations in the moving frame (see Section 2), which suggests the following
behavior:

e−z
√
tw

(
z√
t

)
, z = x− 2t+ r ln t,

with w coming from Lemma 2.2. However, some modifications will be necessary to deal,
in particular, with the non-autonomous drift term that was neglected in Section 2, see Re-
mark 2.3. However, this ansatz ignores the non-autonomous drift term that we neglected
earlier in the derivation, and incorporating this term will be crucial to constructing proper
sub- and super-solutions. These modifications slightly differ between the delay case and the
advance case, as the signs of those ignored terms are different.

Step 1: a first super-solution. For t > 0, z ≥ 0, we define

ψ(t, z) := e−zt
1
2
+r′−r w

(
z√
t

)
, (3.3)

where the function w is given by Lemma 2.2, and

r′ = max(r, 0). (3.4)

For M ≥ 0 to be specified later, let us prove that

û(t, x) :=

(
1− M√

t

)
ψ(t, x− 2t+ r′ ln t) (3.5)

is a super-solution of (1.1) for all t ≥ t0 (with t0 > 1 large enough) and x ≥ 2t− r′ ln t.
Let us start with

ũ(t, x) := ψ(t, x− 2t+ r′ ln t).
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Observe that

∂tψ(t, z) =

(
1

2
+ r′ − r

)
e−z

t
1
2
+r−r′

w

(
z√
t

)
− ze−z

2t1+r−r′
w′
(
z√
t

)
,

∂zψ(t, z) = −ψ(t, z) + e−ztr
′−r w′

(
z√
t

)
,

∂zzψ(t, z) = ψ(t, z)− 2e−ztr
′−r w′

(
z√
t

)
+

e−z

t
1
2
+r−r′

w′′
(
z√
t

)
.

Combining this and (2.1), we reach

Lũ(t, x) ≥ ∂tũ− ∂xxũ− ũ

= ∂tψ +

(
−2 +

r′

t

)
∂zψ − ∂zzψ − ψ

= e−z

(
1
2 + r′ − r
t
1
2
+r−r′

− r′

t
1
2
+r−r′

)
w

(
z√
t

)
+ e−z

(
− z

2t1+r−r′
+

r′

t1+r−r′

)
w′
(
z√
t

)
− e−z

t
1
2
+r−r′

w′′
(
z√
t

)
= e−z

1
2 − r
t
1
2
+r−r′

w

(
z√
t

)
+ e−z

(
− z

2t1+r−r′
+

r′

t1+r−r′

)
w′
(
z√
t

)
+

e−z

t
1
2
+r−r′

(
z

2
√
t
w′
(
z√
t

)
+

(
r − 1

2

)
w

(
z√
t

))
=

r′e−z

t1+r−r′
w′
(
z√
t

)
,

where we use the shorthand z = x− 2t+ r′ ln t.
When r ≤ 0, then r′ = 0 and ũ is already a super-solution, so one may choose M = 0

in (3.5). Unfortunately, when r > 0 this remaining term may be negative, and at least this is
the case when r > 1

2 due to w(y) ∼ Cy1−2r as y → +∞.
We now deal with the case r > 0 (so that r′ = r). The key point is that w is increasing

on a neighborhood of 0, beyond which |w′|/w remains bounded. Precisely, from Lemma 2.2,
we can select δ > 0 such that w′ > 0 in [0, δ), and then M > 0 such that

2r′|w′|
w

≤M on [δ,+∞). (3.6)

Now, we set t0 > 1 large enough such that 1− M√
t0
≥ 1

2 . Then, since û(t, x) =
(

1− M√
t

)
ũ(t, x),

one has

Lû ≥ ∂tû− ∂xxû− û =
e−z

t

[(
1− M√

t

)
r′w′

(
z√
t

)
+
M

2
w

(
z√
t

)]
≥ 0,

for any t ≥ t0, z = x − 2t + r′ ln t ≥ 0. The last inequality follows from either w′
(
z√
t

)
> 0

for 0 ≤ z ≤ δ
√
t, or from (3.6) for z ≥ δ

√
t. We have thus proved that û = û(t, x) is a

super-solution of (1.1) for all t ≥ t0 and x ≥ 2t− r′ ln t.
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Step 2: comparison with the solution. Since û from (3.5) satisfies û(t, 2t − r′ ln t) = 0
for t ≥ 0, we cannot directly use it as a super-solution. Therefore we will first cut it by 1 on
a left half-line. By setting t0 > 1 large enough such that M√

t0
≤ 1

2 , we have

û (t+ t0, 2(t+ t0)− r ln(t+ t0) + 1)

=

(
1− M√

t+ t0

)
e−1−(r

′−r) ln(t+t0) (t+ t0)
1
2
+r′−rw

(
(r′ − r) ln(t+ t0) + 1√

t+ t0

)
≥ e−1

2

√
t+ t0 × w

(
(r′ − r) ln(t+ t0) + 1√

t+ t0

)
.

We deduce from w′(0) = 1 that

w

(
(r′ − r) ln(t+ t0) + 1√

t+ t0

)
∼ (r′ − r) ln(t+ t0) + 1√

t+ t0
as t→ +∞,

hence (using also the fact that r′ − r ≥ 0)

inf
t≥0

û (t+ t0, 2(t+ t0)− r ln(t+ t0) + 1) > 0.

It follows that we can find K � 1 so that

Kû (t+ t0, 2(t+ t0)− r ln(t+ t0) + 1) > 1,

for all t ≥ 0. Then

u(t, x) :=

{
1 if x < 2(t+ t0)− r ln(t+ t0) + 1,

min{1,Kû(t+ t0, x)} if x ≥ 2(t+ t0)− r ln(t+ t0) + 1,

is a generalized super-solution of (1.1).
Next we prove that, up to increasing K > 0 if necessary,

u0(x) ≤ u(0, x). (3.7)

Since u0 ≤ 1, we only have to check that

∀x ≥ 2t0 − r ln t0 + 1, u0(x) ≤ Kû(t0, x). (3.8)

By (3.3), (3.5), we have

û(t0, x) ≥ C(t0)e
−xw

(
x− 2t0 + r′ ln t0√

t0

)
,

for some C(t0) > 0. Then, due to w(y) ∼ Cyk as y → +∞ with C > 0 according to
Lemma 2.2, up to decreasing the value of the constant C(t0) we get that

∀x ≥ 2t0 − r ln t0 + 1, û(t0, x) ≥ C(t0)x
ke−x.

From this and (1.4) it follows that, for K > 0 large enough, (3.8) holds, and so does (3.7).
However, we point out that the assumption r < 3

2 played a crucial role here, since when
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r = 3
2 then w(y) has a gaussian behavior as y → +∞ and (3.8) cannot hold regardless of the

multiplicative constant K.
Still, when r < 3

2 , and applying the parabolic comparison principle, we get that

u(t, x) ≤ u(t, x), (3.9)

for any t ≥ 0 and x ∈ R.
In particular, for t large enough and x ≥ 2(t+ t0)− r ln(t+ t0) +

√
t, we find that

u(t, x) ≤ Ke−(x−2(t+t0)+r
′ ln(t+t0))(t+ t0)

1
2
+r′−rw

(
x− 2(t+ t0) + r′ ln(t+ t0)√

t+ t0

)
≤ K

(
sup
y≥1

w(y)

yk

)
e−(x−2(t+t0))(t+ t0)

1
2
−r ×

(
x− 2(t+ t0) + r′ ln(t+ t0)√

t+ t0

)k
≤ K

(
sup
y≥1

w(y)

yk

)
e−(x−2(t+t0))

(
x− 2(t+ t0) + r′ ln(t+ t0)

)k
≤ K

(
sup
y≥1

w(y)

yk

)
e−(
√
t−r ln(t+t0))(

√
t+ (r′ − r) ln(t+ t0))

k,

where we have used the fact that k = 1−2r. Since Lemma 2.2 ensures that supy≥1
w(y)
yk

< +∞,
we conclude that

lim
t→+∞

sup
x≥2(t+t0)−r ln(t+t0)+

√
t

u(t, x) = 0. (3.10)

To obtain an upper estimate between the expected moving frame of the level sets, i.e.
2t−r ln t+O(1), and 2(t+ t0)−r ln(t+ t0)+

√
t beyond which the above limit holds, the proof

differs slightly between the delay and advance cases. We detail this in the next two steps.

Step 3: conclusion in the delay case 0 ≤ r < 3
2 . Here, r′ = r by (3.4) so that (3.9)

yields

u(t, x) ≤ Ke−(x−2(t+t0)+r ln(t+t0))
√
t+ t0 × w

(
x− 2(t+ t0) + r ln(t+ t0)√

t+ t0

)
,

for x ≥ 2(t+t0)−r ln(t+t0)+1, where t0 > 1 is fixed large enough. Recalling that w(y) ∼ Cyk
with k = 1− 2r ≤ 1 as y → +∞, and also that w(0) = 0 and w′(0) = 1, we have that w(y)/y
is bounded on (0,+∞). Then

u(t, x) ≤ K

(
sup
y≥0

w(y)

y

)
(x− 2(t+ t0) + r ln(t+ t0))e

−(x−2(t+t0)+r ln(t+t0)),

for x ≥ 2(t+ t0)− r ln(t+ t0) + 1, from which the conclusion (3.1) of Proposition 3.1 follows.
Furthermore, evaluating the previous inequality at x = 2t−r ln t+y with t ≥ 1 and y ≥ 2t0+1,
we find some k1 > 0 large enough so that

u(t, 2t− r ln t+ y) ≤ k1(y + 1)e−y for any t ≥ 1, y ≥ 2t0 + 1.

From the global boundedness of u and the positivity of the right-hand term for y ≥ 0, one
then infers (3.2), which concludes the proof of Proposition 3.1 in the delay case.
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Step 4: conclusion in the advance case r < 0. Here, r′ = 0 > r. By (3.4), the same
computation as in Step 3 only provides an upper estimate on the location of the level sets of
the form 2t − r ln t + Cm ln(ln t). Therefore we must refine the argument. First, for t ≥ 1,
(3.9) now yields

u
(
t, 2(t+ t0)− r ln(t+ t0) +

√
t
)
≤ Ke−

√
t
√
t+ t0 × w

(
−r ln(t+ t0) +

√
t√

t+ t0

)
,

and thus there is T � 1 such that

u
(
t, 2(t+ t0)− r ln(t+ t0) +

√
t
)
≤ 2K

√
te−
√
tw(1), ∀t ≥ T. (3.11)

Besides, since
ϕ(z) := ze−z

satisfies ϕ′′ + 2ϕ′ + ϕ = 0 and ϕ′ ≤ 0 on (1,+∞), and recalling that r < 0 here, it is
straightforward that, for any K2 > e,

u2(t, x) :=

{
1 if x < 2t− r ln t+ 1,

min{1,K2 ϕ(x− 2t+ r ln t)} if x ≥ 2t− r ln t+ 1,

is a generalized super-solution of (1.1). Furthermore,

u2

(
t, 2(t+ t0)− r ln(t+ t0) +

√
t
)
∼ K2e

−2t0
√
te−
√
t as t→ +∞.

Putting this together with (3.11), we get, up to increasing T if necessary, that

u
(
t, 2(t+ t0)− r ln(t+ t0) +

√
t
)
≤ u2

(
t, 2(t+ t0)− r ln(t+ t0) +

√
t
)
, ∀t ≥ T,

provided that K2 > 2Kw(1)e2t0 . As in Step 2, due to u ≤ 1, we may increase K2 > 0 if
necessary so that

u(T, x) ≤ u2(T, x),

for all x ≤ 2(T + t0)− r ln(T + t0) +
√
T . Applying the parabolic comparison principle on

ΩT := {(t, x) : t ≥ T and x ≤ 2(t+ t0)− r ln(t+ t0) +
√
t},

we end up with
u(t, x) ≤ u2(t, x), ∀(t, x) ∈ ΩT .

The estimate (3.2) follows immediately from the definition of u2, at least for t ≥ T ∗ with
T ∗ > 1 large enough and 1 ≤ y ≤

√
t

2 with k1 = K2. For 0 ≤ y ≤ 1, or for 1 ≤ t ≤ T ∗ and
0 ≤ y ≤

√
t

2 , the same estimate holds up to increasing the factor k1, thanks to the boundedness
of u. Moreover, putting the previous inequality together with (3.10), since any m-level set of
u2 is located around 2t− r ln t+O(1), we finally deduce (3.1).
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3.2 An alternate proof in the advance case (k > 1)

We start with an estimate on the solution v(t, x) to (3.12) (the linearized equation of (1.1)
around the invading steady state) starting from u0, at a moving point x = 2t+O(

√
t).

Lemma 3.2. Let v = v(t, x) be the solution to

∂tv = ∂xxv + v, t > 0, x ∈ R, (3.12)

starting from u0 satisfying Assumption 1.1 with k > 1. Let c > 0 and t0 > 0 be given. Then
there is c0 > 0 such that

v(t, 2t+ c
√
t) ≤ c0t

k
2 e−c

√
t, ∀t ≥ t0.

Proof. Denoting G(t, x) := 1√
4πt
e−

x2

4t the one dimensional Heat kernel, we have

e−tv(t, x) =

∫
R
G(t, x−y)u0(y) dy ≤

∫ 1

−∞
G(t, x−y) dy+A

∫ +∞

1
G(t, x−y)yke−y dy, (3.13)

from Assumption 1.1. Evaluating at x = 2t+ c
√
t, the first term in the above right hand side

is nothing else than

1√
π

∫ −√t− c
2
+ 1

2
√
t

−∞
e−z

2
dz ∼ 1

2
√
π

1√
t
e
−(
√
t+ c

2
− 1

2
√
t
)2
, as t→ +∞. (3.14)

As for the second term, using the change of variable y = 2
√
tz + x − 2t with x = 2t + c

√
t,

some straightforward computations yield

A

∫ +∞

1
G(t, x−y)yke−y dy = A

t
k
2 e−(t+c

√
t)

√
π

∫ +∞

− c
2
+ 1

2
√
t

(2z+c)ke−z
2
dz ≤ c′t

k
2 e−(t+c

√
t), (3.15)

for some c′ > 0. The combination of (3.13), (3.14) and (3.15) concludes the proof (and so if
we only assume k > −1 rather than k > 1).

The above upper estimate now allows us to use the minimal traveling wave, see Lemma 2.1,
as an accurate super-solution.

Proof of Proposition 3.1 when k > 1. We start with some preparation. From Lemma 3.2 (and
the comparison principle), there is c0 > 0 such that

u(t, 2t+
√
t) ≤ c0t

k
2 e−

√
t, ∀t ≥ 1.

Since U(z) ∼ ze−z as z → +∞, we can find z0 > 0 such that U(z) ≥ 1
2ze
−z for all z ≥ z0.

Select T > 1 large enough such that

√
t+ r ln(1 + t) ≥ 1

2

√
t ≥ z0, ∀t ≥ T,

and K > 1 large enough such that

K > 4c0, and KU(
√
T + r ln(1 + T )) > 1. (3.16)
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We aim at applying the comparison principle in the region ΩT := {(t, x) ∈ [T,+∞)× R :
x ≤ 2t+

√
t}. We define

u(t, x) := KU(x− 2t+ r ln(1 + t)),

which is a super-solution since

∂tu− ∂xxu− u(1− u) = K

(
−2 +

r

1 + t

)
U ′ −KU ′′ −KU +K2U2

= K
r

1 + T
U ′ + (K2 −K)U2

is positive since K > 1, r < 0, U ′ < 0. On the lateral boundary (t ≥ T , x = 2t+
√
t) of ΩT ,

we have

u(t, 2t+
√
t) = KU(

√
t+ r ln(1 + t))

≥ K

2
(
√
t+ r ln(1 + t))e−

√
t−r ln(1+t)

≥ K

4

√
te−
√
t(1 + t)−r ≥ K

4
t
k
2 e−

√
t ≥ u(t, 2t+

√
t),

from (3.16). On the boundary (t = T , x ≤ 2T +
√
T ) of ΩT we have

u(T, x) ≥ KU(
√
T + r ln(1 + T )) > 1 ≥ u(T, x).

We thus deduce from the comparison principle that

u(t, x) ≤ KU(x− 2t+ r ln(1 + t)), for all (t, x) ∈ ΩT ,

from which the conclusion of Proposition 3.1 easily follows.

4 The lower estimate

This section is devoted to the following lower estimate. Recall that Em denotes the m-level
set of the solution, as defined in (1.7).

Proposition 4.1 (Lower estimate). Let u = u(t, x) be the solution to (1.1) starting from u0
satisfying Assumption 1.1 with k > −2. Let m ∈ (0, 1) be given. Then, there are Cm > 0 and
Tm > 0 such that

Em(t) ⊂ (2t− r ln t− Cm,+∞), ∀t ≥ Tm, (4.1)

where
r =

1− k
2

<
3

2
.

Moreover, there are k2 > 0 and σ2 > 0 such that

u(t, 2t− r ln t+ y) ≥ k2ye−y for any t ≥ 1, 0 ≤ y ≤ σ2
√
t. (4.2)
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4.1 A lower bound in the far away zone

We begin by demonstrating a lower estimate on the solution to (1.1), starting from u0, eval-
uated at a moving point x = 2t + O(

√
t). Note that this estimate aligns with a shift of the

minimal front U , so that its level sets are positioned around x = 2t− r ln t. This will turn out
to be crucial for bootstrapping our argument with a second sub-solution in subsection 4.2.

Lemma 4.2. Let u = u(t, x) be the solution to (1.1) starting from u0 satisfying Assumption 1.1
with k > −2. Then there exists ε > 0 such that

u(t, 2t+
√
t) ≥ εe−

√
tt

1
2
−r, ∀t ≥ T0, (4.3)

for some T0 > 1 large enough.

Proof. We proceed into two steps. The first one consists in turning our computations from
Section 2 into an actual sub-solution of (1.1). Next, we will prove that this sub-solution
provides the lower estimate at x = 2t+

√
t.

Step 1: the first sub-solution. For t > 0, z ≥ 0, we define as before

ψ(t, z) := e−zt
1
2
+r′−r w

(
z√
t

)
, (4.4)

where the function w is given by Lemma 2.2, and now

r′ = r − 2 < 0. (4.5)

For t0 > 1, M > 0, ε > 0 to be specified later, let us prove that

u(t, x) :=

(
1 +

M√
t

)
εψ(t, x− 2t+ r′ ln t) (4.6)

is a sub-solution of (1.1) for all t ≥ t0 and x ≥ 2t−r′ ln t. By construction u(t, x) also satisfies
the Dirichlet boundary condition

u(t, 2t− r′ ln t) = 0.

We use the computations of Step 1 in subsection 3.1 again and get, denoting z = x−2t+r′ ln t,

Lu(t, x) = ∂tu− ∂xxu− u+ u2

= ε e−z

t1+r−r′

{
− M

2 w
(
z√
t

)
+
(

1 + M√
t

) [
r′w′

(
z√
t

)
+
(

1 + M√
t

)
εe−zt2+r

′−rw2
(
z√
t

)]}

= ε e
−z

t3

{
− M

2 w
(
z√
t

)
+
(

1 + M√
t

) [
r′w′

(
z√
t

)
+
(

1 + M√
t

)
εe−zw2

(
z√
t

)]}
,

where on the last line we simply used r′ = r − 2.
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Next, we distinguish two subdomains. First, we use the fact that w′(0) = 1, hence there
exists δ > 0 such that w′(y) > 1

2 in y ∈ [0, δ]. Then, due to r′ < 0, we have for any t ≥ 1 and
z = x− 2t+ r′ ln t ∈ (0, δ

√
t],

Lu(t, x) ≤ εe
−z

t3

(
1 +

M√
t

)[
r′

2
+ (1 +M) ε max

0≤y≤δ
w2(y)

]
,

which is negative for any

ε <
−r′

2(1 +M) max0≤y≤δ w2(y)
. (4.7)

Furthermore, from Lemma 2.2, we can choose M � 1 such that, for y ≥ δ,

8|r′w′(y)|
w(y)

≤M, w(y) ≤Myk.

Then, for t0 such that

1 +
M√
t0
≤ 2,

we get, for any t ≥ t0 and any z = x− 2t+ r′ ln t ≥ δ
√
t, that

Lu(t, x) = ε
e−z

t3

{
−M

2
w

(
z√
t

)
+

(
1 +

M√
t

)[
r′w′

(
z√
t

)
+

(
1 +

M√
t

)
εe−zw2

(
z√
t

)]}
≤ ε

e−z

t3
w

(
z√
t

) {
−M

4
+ 4Mεe−z

zk

tk/2

}
.

Up to increasing t0 if necessary, we have for any t ≥ t0 that maxz≥δ
√
t e
−zzk = e−δ

√
t(δ
√
t)k,

and then (up to also reducing ε > 0),

Lu(t, x) ≤ εe
−z

t3
w

(
z√
t

) {
−M

4
+ 4Mεe−δ

√
tδk
}
< 0,

for any x ≥ 2t− r′ ln t+ δ
√
t.

Putting the inequalities in both subdomains together, we found M > 0 such that, for any
ε > 0 and t0 > 1 respectively small and large enough, the function (4.6) is a sub-solution
of (1.1) for t ≥ t0 and x ≥ 2t− r′ ln t.

Step 2: comparison with the solution. We claim that, up to reducing ε > 0 and
increasing t0 > 1, we have that

u0 ≥ u(t0, ·), (4.8)

where u is defined in (4.6). Recall that u(t, x) is supported in {x ≥ 2t− r′ ln t}, and hereafter
we extend it continuously by 0 on {x < 2t− r′ ln t}. Therefore, by Assumption 1.1 and up to
increasing t0, we only need to show that

axke−x ≥ u(t0, x), ∀x ≥ 2t0 − r′ ln t0 ≥ 1,

or equivalently,

axk ≥ C(t0)εw

(
x− 2t0 + r′ ln t0√

t0

)
, ∀x ≥ 2t0 − r′ ln t0 ≥ 1, (4.9)
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where C(t0) :=
(

1 + M√
t0

)
e2t0t

1
2
−r

0 . It follows from Lemma 2.2, more precisely (2.2), that
(4.9) is satisfied if ε is small enough.

We conclude that (4.8) holds. Then, by the parabolic comparison principle,

u(t, x) ≥ u(t+ t0, x),

for any t > 0 and x ∈ R. One can verify that ‖u(t + t0, ·)‖L∞(R) decreases algebraically to 0
as t → +∞, due to r′ = r − 2. In particular, we cannot yet conclude anything on the large-
time position of the level sets. However, this decay in time, and specifically the choice of r′,
ensured that the nonlinear component of the reaction term was small enough when evaluating
Lu. Therefore, it played a crucial role in u being a sub-solution.

Still, we now know that, for any t > 0 and x = 2t+
√
t,

u(t, 2t+
√
t) ≥ u(t+ t0, 2t+

√
t) ≥ εe−

√
te2t0(t+ t0)

1
2
−rw

(√
t− 2t0 + r′ ln(t+ t0)√

t+ t0

)
,

and then
u(t, 2t+

√
t) ≥ 1

2
εe2t0w(1)e−

√
tt

1
2
−r,

provided t is large enough. This concludes the proof of (4.3).

4.2 Proof of Proposition 4.1

We now address how the lower estimate on the level sets of the solution to (1.1) follows from
Lemma 4.2. The main idea is to construct a second sub-solution on a left half-line, which
turns out to be more challenging in the advance case.

Step 3: the second sub-solution in the delay case 0 ≤ r < 3
2 . In this case, the minimal

traveling wave itself serves as a sub-solution, see Lemma 2.1. Denote by U the solution to{
U ′′ + 2U ′ + U(1− U) = 0 on R,
U(−∞) = 1, U(0) = 1

2 , U(+∞) = 0,

which is known to satisfy U ′ < 0 and U(z) ∼ Bze−z as z → +∞, for some B > 0. Then, for
any 0 < α < 1 to be selected below, and due to r ≥ 0, it is straightforward to check that

u2(t, x) := αU(x− 2t+ r ln(1 + t))

is a sub-solution of (1.1) for t ≥ 0 and x ∈ R.
Next, we aim at applying the parabolic comparison principle on {(t, x) : t ≥ T, x ≤ 2t+

√
t}

for some appropriate T > T0, where T0 is chosen as in Lemma 4.2. On the one hand, on the
lateral boundary x = 2t+

√
t, we have

u2(t, 2t+
√
t) = αU(

√
t+ r ln(1 + t)) ∼ αBt

1
2
−re−

√
t, as t→ +∞.

In view of the lower estimate (4.3) of the solution u, it follows that, by setting 0 < α < ε
2B ,

we have, for some T > T0 large enough, that

u(t, 2t+
√
t) ≥ u2(t, 2t+

√
t), ∀t ≥ T.
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On the other hand, since spreading occurs (at speed c = 2) we have infx≤0 u(T, x) ≥ 1
2 , up to

increasing T again. Such a time T now being fixed, and since u(t, ·) > 0 for any t > 0 by the
strong maximum principle, we get that

inf
x≤2T+

√
T
u(T, x) > 0.

Hence, imposing 0 < α < infx≤2T+
√
T u(T, x), we immediately get that u(T, x) ≥ u2(T, x) for

all x ≤ 2T +
√
T .

As a result, for any 0 < α < min{ ε
2B , infx≤2T+

√
T u(T, x)}, there exists T > 0 such that

we can deduce from the comparison principle that

u(t, x) ≥ αU(x− 2t+ r ln(1 + t)), ∀t ≥ T, ∀x ≤ 2t+
√
t. (4.10)

Due to the asymptotics of U as y → +∞, there exists some k2 > 0 small enough such that

U(y) ≥ 2k2
α
ye−y for any y ≥ 0.

Thus, from (4.10), we get

u(t, 2t− r ln t+ y) ≥ αU(y + r ln(1 + 1/t)) ≥ k2ye−y,

for any t large enough and 0 ≤ y ≤
√
t+ r ln t. We infer that (4.2) holds.

Moreover, (4.1) is a direct consequence of (4.10) for “small” level sets, say 0 < m < m0 :=
α
2 , and then for all level sets 0 < m < 1 thanks to the following result (which does not require
r ≥ 0 and will be used again later).

Lemma 4.3. Let 0 < m0 < 1 be given. Then, if (4.1) holds for any 0 < m < m0, it actually
holds for any 0 < m < 1.

Proof. Let us consider the remaining case m0 ≤ m < 1. Let us denote by v = v(t, x) the
solution to (1.1) starting from

v0(x) :=


m0
2 if x ≤ −1,

−m0
2 x if − 1 < x < 0,

0 if x ≥ 0.

(4.11)

Since spreading occurs (at speed c = 2), there is a time τ∗ = τ∗m0,m > 0 such that

v(τ∗, x) > m, ∀x ≤ 0. (4.12)

From (4.1) with m = 3
4m0, we know that there are C0 > 0 and T0 > max{1, τ∗} such that

u(t, x) ≥ 3

4
m0, ∀t ≥ T0, ∀x ≤ x∗(t) := 2t− r ln t− C0.

In view of definition (4.11), this implies

u(t, x) ≥ v0(x− x∗(t)), ∀t ≥ T0, ∀x ∈ R,

so that the comparison principle yields

u(t+ τ, x) ≥ v(τ, x− x∗(t)), ∀t ≥ T0, ∀τ ≥ 0, ∀x ∈ R.

Using (4.12), we get that

u(t+ τ∗, x) > m, ∀t ≥ T0, ∀x ≤ x∗(t),

which proves the result.
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Step 4: the second sub-solution in the advance case r < 0. We look for a sub-solution
that is valid for t > 0 and x ≤ 2t +

√
t. In the advance case, the traveling wave cannot be

turned into an appropriate sub-solution. Instead, an adequate tool for the construction is the
following ODE solution.

Lemma 4.4. Let γ > 1 be given. Denote ϕ = ϕγ the solution of the ODE Cauchy problem
ϕ′′ + 2ϕ′ + ϕ− γϕ2 = 0 on (0,+∞),

ϕ(0) = 1
2γ ,

ϕ′(0) = 0.

Then
ϕ′(z) < 0,

ϕ′(z)

ϕ(z)
≥ −1, ∀z > 0.

Moreover, there exists B = Bγ > 0 such that

ϕ(z) ∼ Bze−z, as z → +∞. (4.13)

Proof. This is rather standard from the same ODE techniques which have been extensively
used to characterize traveling waves of reaction-diffusion equations, but we will sketch the
proof for the sake of completeness. First, the ODE is recast{

p′ = q,
q′ = −2q − p+ γp2,

and we use a phase plane analysis. The trajectory corresponding to ϕ in the (p, q) plane starts
from ( 1

2γ , 0) and immediately enters the subset {0 < p < 1
γ , q < 0}. Then it cannot cross

the horizontal segment {0 < p < 1
γ , q = 0}, nor the vertical half-line {p = 1

γ , q < 0}. It also
cannot cross the diagonal {q = −p} (if so then, at the first crossing point, we would have
−1 ≤ q′

p′ = −q+γp2
q = −1+γ p

2

q , which is impossible since q < 0). It already follows that ϕ′ < 0

and ϕ′/ϕ ≥ −1, and that ϕ(+∞) = 0. By standard ODE perturbation theory, we also get
that

ϕ(z) ∼ (Bz + C)e−z, as z → +∞,

for some B ≥ 0. We assume by contradiction that B = 0. Since the PDE ∂tu = ∂xxu+u−γu2
is still of the KPP type, it admits a minimal traveling wave U = Uγ solving{

U ′′ + 2U ′ + U − γU2 = 0 on R,
U(−∞) = 1

γ , U(0) = 1
2γ , U(+∞) = 0,

which is known to satisfy U ′ < 0 and U(z) ∼ Aze−z as z → +∞, for some A > 0. Hence ϕ
and U solve the same ODE and, from the behaviors at z = 0 and z → +∞, the trajectories
in the phase plane should intersect, which contradicts the Cauchy-Lipschitz theorem. We
conclude that B > 0, and (4.13) holds.

Equipped with this, we now claim that we can find η > 0 and γ > 1 such that

u2(t, x) :=

{
e
η z√

tϕ(z) if z > 0,
1
2γ if z ≤ 0,

where z := x− 2t+ r ln t, (4.14)
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is a sub-solution of (1.1) for t > 0, z ≤ 2
√
t. The function u2 is clearly a sub-solution for

z < 0, it is continuous and has the good angle at the gluing point in the sense that

∂xu2(t, (2t− r ln t)+) > 0 = ∂xu2(t, (2t− r ln t)−), ∀t > 0,

since ϕ(0) = 1
2γ and ϕ′(0) = 0. Thus we only need to deal with the differential inequality

when 0 < z ≤ 2
√
t. By using Lemma 4.4 and the ODE satisfied by ϕ, we compute

e
−η z√

tLu2(t, x) = e
−η z√

t
(
∂tu2 − ∂xxu2 − u2 + u22

)
= − ηz

2t3/2
ϕ(z)− 2η√

t
ϕ′(z)− η2

t
ϕ(z)− ϕ′′(z)

−
(

2− r

t

)( η√
t
ϕ(z) + ϕ′(z)

)
− ϕ(z) + e

η z√
tϕ2(z)

= − ηz

2t3/2
ϕ(z)− 2η√

t
(ϕ′(z) + ϕ(z))− η2

t
ϕ(z) +

r

t
ϕ′(z) +

rη

t3/2
ϕ(z)

+
(
e
η z√

t − γ
)
ϕ2(z).

Recalling that r < 0, z > 0, ϕ > 0, ϕ′ < 0 and ϕ′ + ϕ ≥ 0, we get rid of the some nonpositive
terms and find that

e
−η z√

t

ϕ(z)
Lu2(t, x) ≤ −η2 − r

t
+
(
e
η z√

t − γ
)
ϕ(z).

Picking η =
√
−r > 0 and γ = e2η > 1, and using z ≤ 2

√
t, we get

e
−η z√

t

ϕ(z)
Lu2(t, x) ≤ (e2η − γ)ϕ(z) = 0.

As a result, u2 is a sub-solution of (1.1) for t > 0, x ≤ 2t− r ln t+ 2
√
t.

Now, the conclusion is rather similar to that in the delay case. Precisely, we fix η > 0,
γ > 1 as above. Recall that B > 0 is set from (4.13) and ε > 0 is set from Lemma 4.2. Let
0 < α < 1 be any small enough constant so that

αeηB <
ε

2
.

Observe first that αu2 is also a sub-solution for t ≥ 0, x ≤ 2t−r ln t+2
√
t. We aim at applying

the parabolic comparison principle on {(t, x) : t ≥ T, x ≤ 2t+
√
t} for some appropriate T > T0,

where T0 is defined as in Lemma 4.2. On the lateral boundary x = 2t+
√
t, we have

αu2(t, 2t+
√
t) = αe

η(1+r ln t√
t
)
ϕ(
√
t+ r ln t) ∼ αeηBt

1
2
−re−

√
t, as t→ +∞.

In view of the lower estimate (4.3) of the solution u and our choice of α, we can find some
T > T0 large enough such that

u(t, 2t+
√
t) ≥ αu2(t, 2t+

√
t), ∀t ≥ T.

Moreover, since spreading occurs (at speed c = 2), up to increasing T (that we now fix), we
have infx≤0 u(T, x) ≥ 1

2 , and then infx≤2T+
√
T u(T, x) > 0 thanks to the positivity of u. Hence,
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by setting further 0 < α < 2γe−2η infx≤2T+
√
T u(T, x), one may check that u(T, x) ≥ αu2(T, x)

for all x ≤ 2T +
√
T .

As a result, we deduce from the comparison principle that

u(t, x) ≥ αu2(t, x), ∀t ≥ T, ∀x ≤ 2t+
√
t. (4.15)

The end of the proof proceeds as in the delay case. On the one hand, (4.1) immediately
follows from (4.15) for “small” level sets, and then for all level sets thanks to Lemma 4.3. On
the other hand, (4.2) follows from (4.15) together with the definition of u2 in (4.14) and the
asymptotics of ϕ by Lemma 4.4. We omit the details.

5 The critical case k = −2
In this section, we prove the following proposition, from which Theorem 1.3 will follow.

Proposition 5.1 (Level sets in the critical case). Let u = u(t, x) be the solution to (1.1)
starting from u0 satisfying Assumption 1.1 with k = −2. Let m ∈ (0, 1) be given. Then, there
are Cm > 0 and Tm > 0 such that

Em(t) ⊂
(

2t− 3

2
ln t+ ln ln t− Cm, 2t−

3

2
ln t+ ln ln t+ Cm

)
, ∀t ≥ Tm. (5.1)

Moreover, there are T > 0, k1 > k2 > 0 and σ1 > 0 such that

k2ye
−y ≤ u

(
t, 2t− 3

2
ln t+ ln ln t+ y

)
≤ k1(y + 1)e−y, (5.2)

for any t ≥ T and 0 ≤ y ≤ σ1 ln t.

Step 1. Preliminary computations. Let us first consider v = v(t, x) the solution to the
heat equation on the half-line with Dirichlet boundary condition, namely{

∂tv = ∂xxv, t > 0, x > 0,

v(t, 0) = 0, t > 0,

starting from

v0(x) =

{
1 if 0 < x ≤ 1,
1
x2

if x > 1.
(5.3)

In particular,the function e−(x−2t)v(t, x − 2t) solves the linearized equation ∂tu = ∂xxu + u
on a right half-line with a moving Dirichlet condition at x = 2t, and its initial value is also
consistent with Assumption 1.1 with k = −2. Therefore, it serves as a potential candidate to
accurately determine the position of the level sets.

First, we know that

v(t, x) =
1√
4πt

∫ +∞

0

(
e−

(x−y)2
4t − e−

(x+y)2

4t

)
v0(y)dy

=
e−

x2

4t

√
4πt

∫ +∞

0
e−

y2

4t

(
e
yx
2t − e−

yx
2t

)
v0(y)dy,
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so that

v(t, 2
√
t) =

e−1√
4πt

∫ +∞

0
e−

y2

4t

(
e
y√
t − e−

y√
t

)
v0(y)dy

=
e−1√

4π

∫ +∞

0
e−

y2

4
(
ey − e−y

)
v0(
√
ty)dy

=
e−1√

4π

∫ 1/
√
t

0
e−

y2

4
(
ey − e−y

)
dy +

e−1√
4π

∫ +∞

1/
√
t
e−

y2

4
(
ey − e−y

) 1

ty2
dy

=: I1 + I2.

On the one hand, as t→ +∞,

I1 ∼
e−1√
π

∫ 1/
√
t

0
ydy = O

(
1

t

)
.

On the other hand, due to the integrand in I2 being integrable at +∞, but not at 0, we have,
as t→ +∞,

I2 ∼
e−1√

4π

∫ 1

1/
√
t
e−

y2

4
(
ey − e−y

) 1

ty2
dy ∼ e−1√

π

∫ 1

1/
√
t

1

ty
dy ∼ e−1√

π

ln t

2t
.

Therefore

v(t, 2
√
t) ∼ e−1√

π

ln t

2t
, as t→ +∞. (5.4)

Let us conclude this step by a formal discussion. If the ansatz e−(x−2t)v(t, x − 2t) is
accurate, we may expect u(t, 2t+ 2

√
t) to be well approximated by

e−2
√
tv(t, 2

√
t) ∼ e−1√

π
e−2
√
t ln t

2t
, as t→ +∞.

On the other hand, we have that

U

(
2t+ 2

√
t−
(

2t− 3

2
ln t+ ln ln t

))
= U

(
2
√
t+

3

2
ln t− ln ln t

)
∼ B ×

(
2
√
t+

3

2
ln t− ln ln t

)
e−2
√
t− 3

2
ln t+ln ln t

∼ 2Be−2
√
t ln t

t
, as t→ +∞.

Observing that both estimates coincide, this suggests that the position of the front of the
solution u should be around 2t− 3

2 ln t+ ln ln t, in agreement with our Theorem 1.3.

Step 2. Lower estimate. The rough plan is to first perturb the function v defined in the
previous step to make it a sub-solution, thereby obtaining a lower bound on the solution at
x = 2t + 2

√
t. Subsequently, the lower estimate on the level sets will follow similarly to the

noncritical delay case, thanks to the fact that a slowed-down minimal front also serves as a
sub-solution.
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Precisely, we consider

u(t, x) = δ ×
(

1 +
M

(t+ 1)1/4

)
× e−(x−2t)v(t, x− 2t), t ≥ 0, x ≥ 2t,

where δ > 0 and M > 0 will be specified below, chosen to be respectively small and large
enough. Notice that we multiplied the ansatz e−(x−2t)v(t, x − 2t) by a decreasing in time
function. As in the previous section, provided that v decays to 0 fast enough, the resulting
additional term when evaluating the KPP equation will absorb the nonlinear quadratic term
that our computation in Step 1 had previously ignored.

First, by Assumption 1.1 (with k = −2) and our choice of v(0, ·), it is straightforward to
check that, for any M > 0, there exists δ > 0 small enough so that

u(0, x) ≤ u0(x), ∀x ≥ 0.

By the strong maximum principle, we also have that

u(t, 2t) = 0 < u(t, 2t), ∀t > 0.

Next, let us show that u is a sub-solution. We compute, for any t > 0 and x > 2t,

δ−1ex−2t ×
(
∂tu− ∂xxu− u+ u2

)
= v(t, x− 2t)×

[
δ

(
1 +

M

(t+ 1)1/4

)2

e−(x−2t)v(t, x− 2t)− M

4(t+ 1)5/4

]

≤ v(t, x− 2t)×
[
e−(x−2t)v(t, x− 2t)− M

4(t+ 1)5/4

]
,

assuming further δ(1 + M)2 < 1. From the following lemma, whose proof is postponed, we
can choose M > 0 sufficiently large (and then δ > 0 sufficiently small) to ensure that u is a
sub-solution.

Lemma 5.2. For any ε > 0, the function v defined in Step 1 satisfies

sup
t>0, x>0

e−xv(t, x)× (t+ 1)
3
2
−ε < +∞.

Hence, by the parabolic comparison principle, we have that

u(t, x) ≥ u(t, x) = δ

(
1 +

M

(t+ 1)1/4

)
e−(x−2t)v(t, x− 2t), for all t ≥ 0, x ≥ 2t.

As a result, we deduce from (5.4) that that there exists ε > 0 such that

u(t, 2t+ 2
√
t) ≥ εe−2

√
t × ln t

t
, ∀t > 1. (5.5)

The rest of the proof proceeds similarly to the noncritical case, see Step 3 of subsection 4.2
for further details. Consider the second sub-solution (as can be easily verified)

u2(t, x) := αU
(
x− 2t+

3

2
ln t− ln ln t

)
,
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where α ∈ (0, 1) and U denotes the minimal travelling wave. Recalling U(z) ∼ Bze−z as
z → +∞, we have

u2(t, 2t+ 2
√
t) ∼ 2αBe−2

√
t × ln t

t
, as t→ +∞.

In view of (5.5), we may thus choose α small enough so that, for some large enough T > 0,

u2(t, 2t+ 2
√
t) ≤ u(t, 2t+ 2

√
t), ∀t ≥ T.

Up to further reducing α, we may also have

u2(T, x) ≤ u(T, x),

for x ≤ 2T + 2
√
T . Finally, by another application of the parabolic comparison principle, we

have that
u2(t, x) ≤ u(t, x), for any t ≥ T and x ≤ 2t+ 2

√
t. (5.6)

We can now conclude that there exist Cm, Tm > 0

Em(t) ⊂
(

2t− 3

2
ln t+ ln ln t− Cm,+∞

)
, for all t ≥ Tm,

first for small 0 < m < α
2 , then for all 0 < m < 1 by Lemma 4.3. Let us point out that this

already proves the drift is not exactly logarithmic.
It also follows from (5.6) and the spatial asymptotics of U (hence, of u2) that there exists

k2 > 0 such that

u

(
t, 2t− 3

2
ln t+ ln ln t+ y

)
≥ k2ye−y,

for all t ≥ T and 0 ≤ y ≤
√
t. In particular, we have proved the first inequality in (5.2).

Step 3. Upper estimate. Let us consider

û(t, x) :=

(
1− M

t1/4

)
× t3/2

ln t
e−(x−2t+

3
2
ln t−ln ln t)v

(
t, x− 2t+

3

2
ln t− ln ln t

)
,

where M > 0 is sufficiently large (to be specified later), and show that it is a positive super-
solution for t large enough and x > 2t− 3

2 ln t+ ln ln t.
Denoting z = x− 2t+ 3

2 ln t− ln ln t for convenience, it is straightforward to compute(
1− M

t1/4

)−1
× ez ln t

t3/2
× (∂tû− ∂xxû− û) =

(
3

2t
− 1

t ln t

)
∂xv +

M

4t5/4

(
1− M

t1/4

)−1
v(t, z),

for t > 0 and z > 0. From the following lemma, whose proof is postponed, we may choose
t0 > 0 and M > 0 sufficiently large to make û a (positive) super-solution of the KPP equation
on the moving right half-line t > t0, x > 2t− 3

2 ln t+ ln ln t.

Lemma 5.3. There are t0 > 0 and C > 0 such that the function v defined in Step 1 satisfies

∂xv(t, x)

v(t, x)
≥ − C

t1/4
, for all t > t0, x > 0.
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We now sketch the end of the proof of the upper estimate. First, for any K > 1, we define

u(t, x) =

{
1 if x < 2(t+ t0)− 3

2 ln(t+ t0) + ln ln(t+ t0) + 1,

min{1,Kû(t+ t0, x)} if x ≥ 2(t+ t0)− 3
2 ln(t+ t0) + ln ln(t+ t0) + 1.

We have that

Kû

(
t+ t0, 2(t+ t0)−

3

2
ln(t+ t0) + ln ln(t+ t0) + 1

)
= K

(
1− M

(t+ t0)1/4

)
× (t+ t0)

3/2

ln(t+ t0)
e−1v(t+ t0, 1)

which, up to increasing t0 and K, is strictly larger than 1 for all t > 0 thanks to the following
lemma, whose proof is also postponed. As a result, u is a generalized super-solution of the
KPP equation (for all t > 0 and x ∈ R), for any choice of K large enough.

Lemma 5.4. There are C2 > C1 > 0 and T > e such that the function v defined in Step 1
satisfies, for any t ≥ T and x ∈ (1, ln t),

C1
x ln t

t3/2
≤ v(t, x) ≤ C2

x ln t

t3/2
.

In order to apply the comparison principle, let us check that

u0 ≤ u(t0, ·) on R. (5.7)

Proceeding as in the noncritical case, up to increasing the constant K, it suffices to check this
inequality in a neighborhood of +∞. With the time t0 now fixed, by the strong maximum
principle and the positivity of the initial data v0, see (5.3), there exists α ∈ (0, 1) small enough
such that

v(t, 1) ≥ α, ∀t ∈ [0, t0].

Moreover, recall that

v0(x) =
1

x2
, ∀x ≥ 1.

Also, since v(t, x) := α
x2

satisfies

∂tv = 0 < ∂xxv, x ≥ 1,

by the comparison principle, we get that

v(t0, x) ≥ α

x2
, ∀x ≥ 1.

In particular, for all x ≥ 2t0 − 3
2 ln t0 + ln ln t0 + 1,

û(t0, x) ≥

(
1− M

t
1/4
0

)
× t

3/2
0

ln t0
e2t0−

3
2
ln t0+ln ln t0 × αe−x

(x− 2t0 + 3
2 ln t0 − ln ln t0)2

.

We can thus find K large enough so that

Kû(t0, x) ≥ Ae
−x

x2
≥ u0(x),

25



on a neighborhood of +∞, so that (5.7) does hold.
We are now in a position to apply the comparison principle, yielding

u(t, x) ≤ u(t+ t0, x),

for all t > 0 and x ∈ R. The upper estimate on the position of the level sets finally follows, as
detailed below.

First, from our results in the noncritical case (say for a chosen k in (−2,−1) for which
r > 1) and the comparison principle, we already know that

lim sup
t→+∞

sup
x≥2(t+t0)−ln(t+t0)

u(t, x) = 0. (5.8)

Next, for any m ∈ (0, 1), select X > 1 large enough so that KC2Xe
−X < m (where C2 comes

from Lemma 5.4) and define the interval

It :=

(
2t− 3

2
ln t+ ln ln t+X, 2t− ln t

)
.

Then we have

K−1 × lim sup
t→+∞

sup
x∈It+t0

u(t, x)

≤ lim sup
t→+∞

sup
x∈It+t0

û(t+ t0, x)

≤ lim sup
t→+∞

sup
x∈It+t0

(t+ t0)
3/2

ln(t+ t0)
e−(x−2(t+t0)+

3
2
ln(t+t0)−ln ln(t+t0))

×v
(
t+ t0, x− 2(t+ t0) +

3

2
ln(t+ t0)− ln ln(t+ t0)

)
≤ lim sup

t→+∞
sup

X≤z≤ln(t+t0)

(t+ t0)
3/2

ln(t+ t0)
e−z × v (t+ t0, z)

≤ lim sup
t→+∞

sup
X≤z≤ln(t+t0)

C2ze
−z

≤ C2Xe
−X

< K−1m,

where we have used Lemma 5.4 again for the antepenultimate inequality. Putting this together
with (5.8), we infer that there is Tm > 0 large enough so that, for all t ≥ Tm,

Em(t) ⊂
(
−∞, 2(t+ t0)−

3

2
ln(t+ t0) + ln ln(t+ t0) +X

)
,

which completes the proof of (5.1).
Now fixing, say, m = 1

2 and proceeding similarly, we may also find that, for any t > 0
and y such that

2t− 3

2
ln t+ ln ln t+ y ∈ It+t0 ,
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then

u

(
t, 2t− 3

2
ln t+ ln ln t+ y

)
≤ K

(t+ t0)
3/2

ln(t+ t0)
e−(y−2t0+

3
2
ln
t+t0
t

+ln ln t−ln ln(t+t0))

×v
(
t+ t0, y − 2t0 +

3

2
ln
t+ t0
t

+ ln ln t− ln ln(t+ t0)

)
≤ KC2 ×

(
y − 2t0 +

3

2
ln
t+ t0
t

+ ln ln t− ln ln(t+ t0)

)
e−(y−2t0+

3
2
ln
t+t0
t

+ln ln t−ln ln(t+t0))

≤ k1(y + 1)e−y,

for some k1 > 0, and for all t ≥ T with T > 0 large enough. Now, letting σ1 ∈ (0, 1/2), we
can assume up to increasing T that, for all t ≥ T ,

y ∈ (2t0 +X + 1, σ1 ln t)⇒ 2t− 3

2
ln t+ ln ln t+ y ∈ It+t0 ,

and then
u

(
t, 2t− 3

2
ln t+ ln ln t+ y

)
≤ k1(y + 1)e−y, (5.9)

for all t ≥ T and 2t0 + X + 1 ≤ y ≤ σ1 ln t. Since the left-hand term of (5.9) is bounded
from above by 1, and the right-hand term has a positive minimum on [0, 2t0 + X + 1], one
can deduce that (5.9) holds true for all t ≥ T and 0 ≤ y ≤ σ1 ln t, up to increasing k1. This
proves the second inequality in (5.2).

It thus only remains to prove the three postponed lemmas on the function v defined in
Step 1.

Proof of Lemma 5.2. Notice that e−(x−2t)v(t, x− 2t) solves the linearized equation

∂tu = ∂xxu+ u,

together with a Dirichlet boundary condition at x = 2t. Recall also that we have found in the
noncritical case a family of super-solutions to this linear equation. Indeed, for any k ∈ (−2, 1)
and r = 1−k

2 > 0 (see Step 1 in subsection 3.1 in the delay case), then

u(t, x) =

(
1− M√

t

)
e−(x−2t+r ln t)

√
t× w

(
x− 2t+ r ln t√

t

)
,

where w comes from Lemma 2.2, is a positive super-solution to this linear equation for all
t ≥ t0 (with t0 large enough) and x ≥ 2t > 2t− r ln t.

By construction,
e−xv(0, x) ≤ xke−x,

for all x > 1. Therefore, proceeding similarly to the noncritical case, we may find that

e−(x−2t)v(t, x− 2t) ≤ Ku(t+ t0, x),
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for some large enough K, and any t > 0, x > 2t. Due to the properties of w from Lemma 2.2,
namely the fact that supy≥0w(y)/y < +∞, we get that

e−(x−2t)v(t, x− 2t) ≤ Ke−(x−2(t+t0)+r ln(t+t0))
√
t× w

(
x− 2(t+ t0) + r ln(t+ t0)√

t+ t0

)
≤ Ce−(x−2t) × t−r × (x− 2t+ r ln(t+ t0)),

for some C > 0. Since r can be chosen arbitrarily close to 3/2, we reach the conclusion.

Proof of Lemma 5.3. First, recall that

v(t, x) =
1√
4πt

∫ +∞

0

(
e−

(x−y)2
4t − e−

(x+y)2

4t

)
v0(y)dy

=
e−

x2

4t

√
πt

∫ +∞

0
e−

y2

4t sinh
(xy

2t

)
v0(y)dy.

Using the second expression, we find that

∂xv(t, x) = − x
2t
v(t, x) +

e−
x2

4t

√
πt

∫ +∞

0

ye−
y2

4t

2t
cosh

(xy
2t

)
v0(y)dy ≥ − x

2t
v(t, x).

It already follows that

∂xv(t, x)

v(t, x)
≥ − 1

t1/4
for all t > 0, 0 ≤ x ≤ 2t3/4.

Next, let us consider the case x > 2t3/4. On the one hand, for any t > 1 (so that also
x−
√
t > 1), we have

v(t, x) ≥ 1√
4πt

∫ x+
√
t

x−
√
t

(
e−

(x−y)2
4t − e−

(x+y)2

4t

)
v0(y)dy

=
1√
4πt

∫ √t
−
√
t

(
e−

y2

4t − e−
(2x+y)2

4t

)
× 1

(x+ y)2
dy

≥ e−
1
4

√
4πt

∫ √t
−
√
t

(
1− e−

x2+xy
t

)
× 1

(x+ y)2
dy.

But −
√
t ≤ y ≤

√
t, x > 2t3/4 and t > 1 imply x2+xy

t ≥ 2t1/4 ≥ 2 so that

v(t, x) ≥ e−
1
4

x2
√

4πt
(1− e−2)

∫ √t
−
√
t

1

(1 + y
x)2

dy ≥ δ

x2
,

for some δ > 0. On the other hand,

∂xv(t, x) =
1√
4πt

∫ +∞

0

(
−x− y

2t
e−

(x−y)2
4t +

x+ y

2t
e−

(x+y)2

4t

)
v0(y)dy

≥ − 1√
4πt

∫ +∞

0

x− y
2t

e−
(x−y)2

4t v0(y)dy

= − 1√
4πt

(I1 + I2 + I3),
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where I1, I2, and I3 are obtained by integrating, respectively, over (0, 1), (x(1− t−1/8), x(1 +
t−1/8)), and the remaining intervals. Recalling (5.3), we have, for any t ≥ t0 with t0 > 0 large
enough and x > 2t3/4,

I1 =

∫ 1

0

x− y
2t

e−
(x−y)2

4t dy ≤ xe−
(x−1)2

4t

2t
,

but also (in the sequel C denotes a positive constant that may vary from one line to another)

I2 =

∫ x(1+t−1/8)

x(1−t−1/8)

x− y
2t

e−
(x−y)2

4t v0(y)dy

=

∫ xt−1/8

−xt−1/8

y

2t
e−

y2

4t × 1

x2(1− y
x)2

dy

≤
∫ xt−1/8

−xt−1/8

y

2t
e−

y2

4t ×
1 + 2 yx
x2

dy + C

∫ xt−1/8

−xt−1/8

|y|3

tx4
e−

y2

4t dy

= 2

∫ xt−1/8

0

y2

tx3
e−

y2

4t dy + C

∫ xt−1/8

−xt−1/8

|y|3

tx4
e−

y2

4t dy

≤ 2
√
t

x3

∫ +∞

0
y2e−

y2

4 dy +
Ct

x4

∫ +∞

−∞
|y|3e−

y2

4 dy

≤ C
√
t

x3
(since x > 2t3/4),

and finally

I3 =

(∫ x(1−t−1/8)

1
+

∫ +∞

x(1+t−1/8)

)
x− y

2t
e−

(x−y)2
4t v0(y)dy

≤

(∫ x(1−t−1/8)

1
+

∫ +∞

x(1+t−1/8)

)
|x− y|

2t
e−

(x−y)2
4t dy

≤

(∫ −xt−1/8

−∞
+

∫ +∞

xt−1/8

)
|y|
2t
e−

y2

4t dy

≤

(∫ −xt−5/8

−∞
+

∫ +∞

xt−5/8

)
|z|
2
e−

z2

4 dz

≤ Ce−
(xt−5/8)2

4 .

Using again the fact that x > 2t3/4, we have, for any t ≥ t0 with t0 > 0 large enough,

x3√
t
I1 ≤

x4e−
(x−1)2

4t

2t3/2
≤ Ct3/2e−

√
t ≤ C,

and
x3√
t
I3 ≤ C

x3√
t
e−

(xt−5/8)2

4 ≤ Ct7/4e−t1/4 ≤ C.

Finally, putting all this together, we find that

∂xv(t, x)

v(t, x)
≥ −(I1 + I2 + I3)√

4πt× v(t, x)
≥ − C

x3
× x2

δ
≥ − C

t3/4
,
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for any t ≥ t0 with t0 > 0 large enough and x > 2t3/4. Putting this together with our previous
estimate for x ≤ 2t3/4, the proof of Lemma 5.3 is complete.

Proof of Lemma 5.4. Consider t > e and x ∈ (1, ln t). Then, we have

v(t, x) =
e−

x2

4t

√
4πt

∫ +∞

0
e−

y2

4t

(
e
yx
2t − e−

yx
2t

)
v0(y)dy

=
e−

x2

4t

√
4π

∫ +∞

0
e−

y2

4

(
e
yx

2
√
t − e−

yx

2
√
t

)
v0(
√
ty)dy

= I1 + I2 + I3 + I4,

where Ii (1 ≤ i ≤ 4) will be defined and estimated below. For the sake of expediency, in the
sequel f(t, x) ≈ g(t, x) means that there is C > 0 such that

f(t, x)

Cg(t, x)
→ 1 as t→ +∞, uniformly with respect to x ∈ (1, ln t).

Now, recalling (5.3),

I1 :=
e−

x2

4t

√
4π

∫ 1/
√
t

0
e−

y2

4

(
e
yx

2
√
t − e−

yx

2
√
t

)
dy

≈
∫ 1/

√
t

0

yx√
t
dy

≈ x

t3/2
,

I2 :=
e−

x2

4t

√
4π

∫ 1

1/
√
t
e−

y2

4

(
e
yx

2
√
t − e−

yx

2
√
t

)
× 1

ty2
dy

≈
∫ 1

1/
√
t

x

t3/2y
dy

≈ x ln t

t3/2
,

0 ≤ I3 :=
e−

x2

4t

√
4π

∫ √t/x
1

e−
y2

4

(
e
yx

2
√
t − e−

yx

2
√
t

)
× 1

ty2
dy

≤ C

∫ √t/x
1

e−
y2

4 × x

t3/2y
dy ≈ x

t3/2
,

and, recalling also that x ∈ (1, ln t),

0 ≤ I4 :=
e−

x2

4t

√
4π

∫ +∞

√
t/x

e−
y2

4

(
e
yx

2
√
t − e−

yx

2
√
t

)
× 1

ty2
dy

≤ 1

t

∫ +∞

√
t/x

e−
y2

8 dy

≤ 1

t

x√
t

∫ +∞

√
t/x

ye−
y2

8 dy

≤ C
x

t3/2
e−

t
8 ln2 t .
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As a result v(t, x) = I1 + I2 + I3 + I4 ≈ x ln t
t3/2

, which ends the proof.

6 Convergence of the profile

In this section, we complete the proof of our main results, namely Theorems 1.2 and 1.3. In
both the noncritical and critical cases, we have already located the level sets, and derived
some lower and upper estimates on the solution in the appropriate moving frame. Now, we
address the convergence to a minimal traveling wave in that moving frame.

The proof, which relies on a Liouville-type result from [5], closely parallels the one in [19,
Section 4] to which we refer for further details. Notably, it proceeds exactly in the same
manner for both the noncritical and critical cases. Therefore, we only provide the details
in the former, and point out that in the latter, one should use Proposition 5.1 instead of
Propositions 3.1 and 4.1, and (5.2) instead of (3.2) and (4.2).

Proof of Theorem 1.2. First, recall from Propositions 3.1 and 4.1 that, for any 0 < m < 1,
the m-level set Em(t) of the solution satisfies

Em(t) ⊂ (2t− r ln t− Cm, 2t− r ln t+ Cm), ∀t ≥ Tm, (6.1)

for some Cm > 0 and Tm > 0.
We first set C > 0 large enough such that

Be−C ≤ k2 ≤ k1 ≤ BeC , (6.2)

where k1 and k2 are defined in Propositions 3.1 and 4.1, and B comes from the asymptotics
U(z) ∼ Bze−z as z → +∞. We will show that (1.6) holds with this choice of C.

We argue by contradiction, and assume there are ε > 0 and a sequence of times (tn)n∈N
such that tn → +∞ as n→ +∞ and

inf
|h|≤C

∥∥∥u(tn, ·)− U(· − 2tn + r ln tn + h)
∥∥∥
L∞(0,+∞)

≥ ε, ∀n ∈ N.

Since U(−∞) = 1 and U(+∞) = 0, by estimate (6.1) on the position of the level sets, we can
find κ > 0 such that

inf
|h|≤C

(
max
|x|≤κ

∣∣∣u(tn, x+ 2tn − r ln tn)− U(x+ h)
∣∣∣) ≥ ε, ∀n ∈ N. (6.3)

Up to extraction, the sequence of functions

un(t, x) := u(t+ tn, x+ 2tn − r ln tn), t ∈ R, x ∈ R,

converges locally uniformly in R2 to some 0 ≤ u∞ = u∞(t, x) ≤ 1 which solves (1.1) on R2.
Furthermore, we have

lim
y→+∞

(
sup

(t,x)∈R2, x≥2t+y
u∞(t, x)

)
= 0 and lim

y→−∞

(
inf

(t,x)∈R2, x≤2t+y
u∞(t, x)

)
= 1. (6.4)

Now, we fix t ∈ R and y > 0, and define

yn := y + r ln
t+ tn
tn

.
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For n sufficiently large, we have t + tn ≥ 1 and 0 ≤ yn ≤ min{σ1, σ2}
√
t+ tn, so that we

deduce from (3.2) and (4.2) that

k2yne
−yn ≤ un(t, 2t+ y) ≤ k1(yn + 1)e−yn .

Passing to the limit as n→ +∞, we obtain

k2ye
−y ≤ u∞(t, 2t+ y) ≤ k1(y + 1)e−y for any t ∈ R, y ≥ 0. (6.5)

Therefore, a Liouville-type theorem, see [19, Lemma 4.1] and [5, Theorem 3.5], implies that
there exists h0 ∈ R such that the time-global solution u∞ satisfies

u∞(t, x) = U(x− 2t+ h0), ∀(t, x) ∈ R2. (6.6)

We are now ready to complete the proof. Recall that U(z) ∼ Bze−z as z → +∞. Thus,
from (6.5) and (6.6), we have k2 ≤ Be−h0 ≤ k1 which, in view of (6.2), enforces |h0| ≤ C.
However, un(0, x)→ u∞(0, x) uniformly for x ∈ [−κ, κ] means nothing else than

max
|x|≤κ

∣∣∣u(tn, x+ 2tn − r ln tn)− U(x+ h0)
∣∣∣→ 0 as n→ +∞,

which contradicts (6.3) since |h0| ≤ C. Therefore, the proof of Theorem 1.2 is complete.
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